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Microscopic theory of thermalization in one dimension with nonlinear bath coupling
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Using a nonperturbative classical model, we numerically investigate the dynamics of mobile particles in-
teracting with an infinite chain of harmonic oscillators, an abstraction of ionic conduction through solid-state
materials. We show that coupling between the mobile particles and a single mass of the chain is sufficient to
induce dissipation of the mobile particles’ energy over a wide range of system parameters. When we introduce
thermal fluctuations in the position of the chain mass, the mobile particles exhibit thermalization, eventually
reaching the same temperature scale as the chain. This model demonstrates how a minimal set of ingredients
can exhibit a link between microscopic motion and macroscopic observables, with computationally efficient
simulations. Finally, we suggest some experimental platforms that could realize such a model.
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I. INTRODUCTION

The relationship between microscopic particle motion and
macroscopic system parameters lies at the heart of statistical
mechanics, and has many implications both in basic science
and technology. The fluctuation-dissipation theorem (FDT),
formally established by Callen and Welton [1], demonstrated
the link between viscous drag and thermal fluctuations experi-
enced by a Brownian particle, first exposed by Einstein [2] and
Smoluchowski [3]. In short, collisions between a Brownian
particle and the medium hosting it drain the particle’s energy,
giving rise to drag and dissipation while also imparting energy
to the particle due to the thermal motion of the medium.

In Brown’s original experiments [4,5], the observed parti-
cles were pollen organelles colliding with water molecules.
Because each Brownian particle is much heavier than the
water molecules, the timescale for its motion is much longer.
Therefore, the force exhibited on the particle by the water
can be treated as uncorrelated white noise, an approxima-
tion which is expected to break down when the masses of
the medium’s constituent particles and the Brownian particle
are similar. An example of such a situation is ionic motion
through solid materials, where the mobile ions have similar
masses to the ions constituting the lattice. Furthermore, the
motion of the lattice ions is correlated due to long-range order.

Ionic transport in solids is garnering growing attention
due to interest in developing solid-state batteries [6—8]. One
of this technology’s integral components is the solid-state
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electrolyte: an electronically insulating material that can con-
duct ions and serves as a separator between the anode and the
cathode. One recent approach proposed a microscopic theory
to describe the dissipative motion of ions through crystalline
solids [9]. In the limit of high temperature and long time,
the effect of correlations is severely diminished, and FDT can
relate random thermal forces to drag in the material.

The problem of a small mobile particle coupled to a
dissipative thermal bath has been of interest to the physics
community for a long time [10,11]. In recent years, there
have been significant advances in understanding the dynamics
of impurities immersed in bosonic [12-16] and fermionic
[12,17,18] systems. In recent work, linearized approaches
have been used to show the emergence of Brownian motion in
D-dimensional Bose-Einstein condensates [19], as well as the
microscopic origins of friction in one-dimensional quantum
liquids [20]. Some related approaches to studying classical
thermalization in microscopic systems are based on the Fermi-
Pasta-Ulam-Tsingou problem [21,22].

In this work, we build on the formalism from Ref. [9]
to approach ion transport from a classical perspective. We
construct a minimal experimentally realizable model to show
how particles trapped in a harmonic potential and coupled to
an “ion framework” composed of a one-dimensional chain of
harmonic oscillators can exhibit both dissipation and thermal-
ization. We demonstrate that interactions between the mobile
particles and a single mass of the chain are sufficient to induce
fluctuation-dissipation behavior. One advantage of our classi-
cal approach is that it does not rely on the assumption that the
displacement of the chain masses is small. In contrast, most
quantum-mechanical formulations of the interaction between
mobile particles and oscillator baths use a coupling that is
linear in the oscillator coordinate [14,16,17,19].

In Sec. II, we derive the integrodifferential equations of
motion for a collection of mobile particles traveling through
a potential landscape generated by a vibrating lattice of
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arbitrary dimensionality. In Sec. III, we simplify those equa-
tions for a one-dimensional system with a specific lattice
geometry, and describe the computational procedure for nu-
merically simulating the particle trajectories. To disentangle
the effects of dissipation and fluctuation, in Sec. IV we explore
the behavior of systems at 7 = 0. We test the scaling of
dissipation with system parameters, and discuss the role of the
“memory” term arising from integrating out the chain degrees
of freedom. In Sec. V, we study the role of fluctuations on
particle trajectories by varying the temperature of the lattice.
Finally, we propose some potential platforms for experimental
validation of this model using cold atoms or ions in Sec. VI.

II. GENERAL MODEL

We begin by considering a general Lagrangian (in spa-
tial dimension D) describing the motion of mobile particles
through a framework of masses with vibrational modes,

L =Tyu(R) ~ Vr(r) -

— Vu(R) 4+ Tr(x) Urx,R,t). (1

Here we combine the displacements of the framework masses
from their equilibrium positions into a single vector r =
&b j=1Tj> and combine the mobile particle positions as R.

Ty (R) and Ty (1) are the kinetic energies of the mobile par-
ticles and framework masses, respectively, while Vj;(R) and
Vi (r) are the corresponding time-independent potential en-
ergies. Finally, U(r, R, t) is a general potential energy that
describes all remaining interactions and perturbations.

Assuming the homogeneous motion of the framework
masses is harmonic, we write

<>

1 1
Tr(r) — Ve(r) —> Er nr — 2rTVr. 2)

Here, in = P =1 m jTD is a block-diagonal matrix where m;
is the mass of the jth framework mass, and \7 is the harmonic
coupling matrix.

The homogeneous equation of motion inf = —Vr obtained
from Eq. (2) can be transformed into a symmetric eigenvalue
problem by first defining ¥ = 2T so that

F= Q% = i Vi iF = VF, 3)

with normalized eigenvectors &; and corresponding eigenval-
ues 522 Hence, we can write £(¢) = ££(¢) and, consequently,

o_lo

r(t) =m 2€¢(t), where ¢(t) is a column vector of normal
coordinates giving the amplitude of each mode, and ¥ =
[€1, &2, ...]1is arow of column vectors €;.

Writing the equations of motion for the framework masses
using all the terms in Eq. (1) yields

k= —Vr — V,U(r,R, 1),

- =P —FWmIVUM R, D), )
where 2 = §-V¥ is a diagonal matrix of the squared
eigenfrequencies. For a single normal coordinate, the equa-
tion of motion takes the form ¢; = —Q?Q — fj, which can be
solved using the Green’s function formalism. Recalling that

the Green’s function for a harmonic oscillator is given by

sin [€2;(r —t)]

Gt 1) = o
J

O —1), (5)

we have
boosin[Q(r — )]
£ = £(0) - / A
x [V, U(r, R, 1,
iy [ g1
= ) /a’t Q,

x el M2V, U R, 1), (6)

where CJH (t) is the homogeneous solution and the subscript
Jj at the braces indicates that we pick out the jth element of
the column vector. The second equality follows from the fact
that ¥ is an orthogonal matrix so that €' = 7. Using r(¢) =

(—)_,

m ;€j¢;(1), we obtain

() =iy el
J

! 1
—/dt%f

Z sm (82 r) ®)
j

J

Gt — )i V.U R, ), (7

The homogeneous solution { (t) is determined by the
thermodynamic properties of the framework. To relate the
amplitudes of the modes to the framework temperature, we
consider the Lagranglan for a single normal mode ¢;, given
by L; = ; 2/2 — Q%¢?/2. The solution to the resulting equa-
tion of m0t10n 18 £j(t) = Ajcos(2t + ¢;), where 0 < ¢; <
27 is a phase factor determined by boundary conditions.

To generate the r(¢) originating from the thermal motion,
we obtain a set of ¢; and A; that correctly reflect the system’s
thermodynamics. The phases ¢; are sampled from a uniform
distribution [0, 27 ). To generate the amplitudes A ;, we recall
that the amplitude is related to the total energy of the oscillator
mode, which is temperature dependent. If we used the Boltz-
mann distribution to generate the amplitudes, at low enough
temperatures, there would be no motion in the chain. There-
fore, we treat the possible energies of each mode as a discrete
spectrum, following the solution of the quantum-mechanical
harmonic oscillator. Then the amplitudes become functions of
the number of quanta n: A j(n). The resulting expectation value
of the square of the displacement is

de; Y., A%(n) cos®(Qt + ¢;)e /%
(¢ (1) :yﬁ_f j %+,
2 >, e
1 ZnAi(n)e_”Qj/QT
- E Zn e—nQ//QT P

€))

where Qr = kgT //i is the thermal frequency. Recalling the fa-
miliar result for a quantum harmonic oscillator (£;(¢)¢;(t)) =
%[VZB(Q]‘) + %], where np is the Bose-Einstein distribution,
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FIG. 1. Schematic of the system. A mobile particle of mass M
undergoes 1D harmonic motion with spring constant K and dis-
placement from equilibrium R. It couples via potential U to the Nth
mass from a periodic 1D chain of N — oo masses, each of which
undergoes harmonic motion with spring constant « and displacement
r, and couples to its neighbor with spring constant k. The 1D chain
has N modes of finite bandwidth and acts as a bath, so the coupling
leads to fluctuation and dissipation of the mobile mass’s motion.

we find that A;(n;) = |/n; + % where 7n; is an integer

nQ;/Qr

25
Q;’
obtained from the probability distribution e~

The second term in Eq. (7) encapsulates all of the interac-
tions in the system. Since this term integrates a generalized
force for all past times, we refer to it as the “memory” term in
the trajectory, and G as the “memory kernel.” While formally
the memory is integrated over all past times, we will explore
the consequences of truncating the integration in Sec. IV C.

The advantage of the memory formalism becomes evident
when writing the the equations of motion for the mobile
particles

MR = —VR[U(r, R, )+ Vi (R)], (10)

where 1\7 =66 ; M jTD is the equivalent of in for the mobile
particles. In order to obtain the trajectories of the mobile par-
ticles, we see that we can neglect the components of r which
do not appear in U(r, R,?). With this restriction, Eq. (7)
allows us to solve only the relevant components of r and
ignore other degrees of freedom. This simplification becomes
more dramatic if the mobile particles interact with a small
fraction of the framework masses. In this way, if the number
of extraneous degrees of freedom of the framework is large
enough, it can act as a thermal bath able to exchange energy
with the mobile particles via the interaction U.

III. ONE-DIMENSIONAL CHAIN
A. Problem formulation

The simplest system with sufficient extraneous degrees of
freedom to act as a heat bath is shown in Fig. 1. In this setup,
the framework is composed of a periodic chain of N — oo
identical masses m connected by identical springs with force
constant k and restricted to one-dimensional (1D) motion.
Each chain mass is also confined by an external harmonic
potential with force constant x to suppress zero-frequency
modes which can cause instabilities in low-dimensional sys-
tems. The vibrational eigenmodes have frequencies

@ = /< nt (1)
i =4/ — — s | —
! m m N

\/Qfmn cos ( N ) + Q2 sin® (%) a1

with  corresponding normalized — eigenvectors ;% =

cos(qjg)«/Z/N and ssm = sm(qjg)«/Z/N for g; = 271]/N
with 1 < j < N/2, where 1 < g < N is the index of the chain
particle. Here, Qmax = /4k/m + «k/m and Quin = /K /m are
the maximum and minimum frequencies of the eigenmodes,
which form an acoustic phonon band.

The mobile particles, each of mass M, move in 1D parallel
to the chain and experience a harmonic potential with force
constant K. The minimum of this potential coincides with the
minimum of the harmonic well containing the Nth chain par-
ticle, as shown in Fig. 1. The mobile particles do not interact
with each other, so V), = %K > j R; in Eq. (10). In addition,
the interactions are restricted to pairwise couplings between
the chain mass and the mobile particles and do not contain an
explicit time dependence, allowing us to write U(r, R, t) as
U(VN, R) = Zj U(}"N, R])

Because only the Nth chain particle interacts with the mo-
bile particles, it is the only mass whose position is relevant
to the system dynamics. Consequently, r in Eq. (7) contains a
single entry ry. Moreover, we retain only the Nth element of
the eigenvectors ey, = +/2/N, ssm = 0, resulting in

12 1 / 1 /2h
rN([): Nﬁz nj+§ Q—COS(QJI—’—(PJ)
: J

dU ), R’
__/ 4Gl — dU[ry(@"), R(@')] )] (12)
 dry
N/2
2 sin (£2;1)
GO=5d =5~
J=1
2 S in (12
- = dz sin (12) L3
nin < _Qrzmn\lgzrznax_Z2

.. 1 d
R;() = M{_EU[W(I) R;®)] —

KR j(t)}. (14)
Since we are interested primarily in the motion of the mo-
bile particles, we define several characteristic scales: €2 =
/K /M is the homogeneous oscillation frequency of the mo-
bile particles, with period t); = 27 /2y and energy Ey =
hQy = Klj%4, where Iy = /h/M 2y, is the quantum oscillator
length. Rewriting Eqgs. (12)-(14) in terms of these character-
istic quantities and expressing m as a multiple of M yields

2 / 1 /2
p(r)z\/;; n.,-~|—§ M—chos(Zyra)jr+¢j)

27 [T, , d®[p('), o;(1")]
——/ dtf‘(t—f)z—dp : » (15)

sin (2 tx)

Cb’mdx
I'(r) = / ,
@min V X% — wlznin \% wrznax —x?

d
Gj(t) = <2n)2{—d—¢[p<r>, oj(0)] = a,-(r)}. a7

oj

16)
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TABLE 1. Parameters used in the model. In the simulations, we
formulate the dynamics using dimensionless quantities, given in the
right column. This formulation leads to values for most quantities on
the order of unity, which helps avoid numerical issues due to machine
precision. Here, Qy = K/M, ty =21 /Quy, Ey = iQy = K13,
and [y = /R/M Q.

Parameter Dimensionless
Chain mass position r p=r/ly
Mobile mass position R o =R/ly
Evolution time t T=t/ty
Chain particle mass m w=m/M
Frequency Q w=Q/Qy
Interaction strength U S =U/Ey
Memory kernel G r=G-Qy
Interaction length s A=s/ly
Mobile particle energy E E=E/Ey
Thermal frequency Qr wr = kgT /Ey

Note that we dropped the subscript N because it is redundant
as we are keeping track of a single chain mass. To help keep
track of the correspondence between regular and dimension-
less parameters of the model, we collect them in Table I.

The harmonic potential of the mobile particle allows mul-
tiple interactions with the chain mass, mimicking transport in
a crystal, where it would interact with many different masses
in the chain. Therefore, £2), is chosen to be smaller than other
energy scales so that the kinetic energy of the mobile particle
does not change due to the potential during its interaction with
the chain.

Despite the simplifications due to the 1D geometry,
Egs. (15)—(17) are still not tractable analytically and require
a numerical approach to compute the trajectories.

B. Computational procedure

Numerically integrating Eqs. (15) and (17), while con-
ceptually straightforward, can be computationally demanding.
We performed our computations using the JULIA programming
language [23], and our code is available in [24]. JULIA is well
suited for scientific computing due to a number of native
optimizations. All our plots are visualized using MAKIE.JL
[25] and employ a scheme suitable for color-blind readers,
developed in [26].

Here we describe the computational techniques that com-
plement the scripts in [24] to reproduce all the calculations
presented in the following sections. We do not provide the
output files because of their size, but we do include the scripts
used to generate them.

By rewriting Eqgs. (15) and (17) using discrete time steps §
so that T = S« for integer «’s, we have

2 1 2
Pa = IVZJ: nj+§ M—a)jcos(zﬂw15“+¢j)

20 S riste - Y %),
L j dp

d
Oju = (2n8>2[—£<1>(p“, Ojo—1) — o,-,al}
J

+ 20’1',0,,1 — Oja—2- (18)

These difference equations can be solved using iteration, as is
common for initial value problems. In our case, we initialize
0j0 and o} to the same value to have the mobile particles
start from rest.

To guarantee the smoothness of the solution, it is important
to consider two factors. First, the time step § has to be much
smaller than the period of the fastest chain mode. Second, &
has to be sufficiently small so that the force experienced by
the rapidly moving mobile particles is smooth in the vicin-
ity of the chain particle with which they interact. We will
illustrate the fulfillment of these conditions in the following
section.

Because p, and oj, in Eq. (18) depend on the earlier
positions, the solution of the difference equation is not paral-
lelizable, which slows down the calculation. Fortunately, we
can alleviate some of the computational load by precomputing
the memory kernel I'. We first define the time period for the
simulation 7 € [0, 7¢] and partition this period into steps of
size §, where § is chosen to satisfy the requirements described
above. Next, we calculate an array [T'(8), I'(26), ..., ['(ty)]
by integrating Eq. (16) using the Gaussian quadrature method.
Because the entries of the array are independent of one an-
other, they can be computed in parallel. Precomputing the
memory kernel eliminates the slow integration step from the
sequential solution of Eq. (18), leaving only algebraic calcu-
lations.

In the course of the simulation, we save the force terms
Zj %Cb(pa, 0j«) and d%jd)(,oa,l, 0j.a—1) for each time step.
We can then calculate the memory term by multiplying the
“past” forces by the appropriate entries of the precomputed I
array and performing a summation. Here I'(0) is multiplied
by the current force, I'(§) by the force from the previous
step, I'(28) by the force from two steps ago, and so on. That
is, I'’s with larger time arguments get multiplied by “older”
forces.

Although the exact form of the interaction between mobile
particles and the chain mass will lead to some quantitative
differences in the particle trajectory, we expect the qual-
itative behavior to be independent of the details of the
potential. Therefore, for the sake of simplicity, we choose
D = @ exp[—(pu — 0j,)*/2A], where F = iy Py is the
interaction amplitude, and s = Alj; is the characteristic length
scale of the interaction.

The final ingredient of the simulation is the homogeneous,
or thermal, motion of the chain particle. To compute the
trajectory for 10° chain masses, we generate 5 x 103 equally
spaced values g; between 0 and 7, along with the corre-
sponding frequencies w; given by Eq. (11). Next, we generate
5 x 10° random phases 0 < ¢; < 2m, as well as random
integers n; from the probability distribution e "i/®1  These
values of n; and ¢; are then used to construct the trajectory

pl(x)y =3 \/n;+ ! /ﬁcos@nwﬂ +¢;), as shown

in Eq. (15).
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FIG. 2. General example with a single mobile particle. Trajectories o (t), p(t) for the mobile particle and the interacting chain particle,
respectively. Here we chose wpin = 2, wmax = 20, u = 2, A = 4, &y = —500 with ¢(0) = 100 and p(0) = 0. The mobile particle undergoes
many oscillations and its energy slowly dissipates until about T = 172. Dissipation then quickly reduces its energy to nearly zero, and it falls
into the potential well of the interacting chain particle, which reaches its largest displacement at around v = 173, indicated by the vertical
yellow line. For late times t > 175, both particles undergo small, persistent, nondissipative oscillations at two frequencies just outside the

phonon band of the chain.

IV. DISSIPATION

A. General picture

To develop a better feel for the system behavior, we will
begin by studying trajectories with vanishing thermal mo-
tion pf = 0. In this case, we expect the mobile particles to
dissipate energy over time due to their interaction with the
chain.

As a first example, we choose a configuration with a single
mobile particle and set @min = 2, Wmax = 20, £ =2, A = 4,
and &y = —500 (attractive interaction). The trajectory for
these parameters is shown in Fig. 2. We chose wp;, to be small
to mimic phonon dispersion in real materials, but larger than
the mobile particle’s harmonic trap frequency, as discussed
above. Our choice of wnx = 20 is a compromise between
providing a wide band and keeping a reasonable computa-
tional load, as discussed below. Other values of wp;, and wmax
produce qualitatively similar results. We set the time step §
of the simulation to be substantially smaller than the period
of the fastest chain mode Ty = 27/ Qmax)/ 2 /) =
1/@max- When written in terms of dimensionless quantities,
periods and frequencies satisfy wt = 1 (while Q¢ = 2x). For
our calculations, § = 1/60®max.

In Fig. 2, we can identify two qualitatively distinct regimes.
For t < 172, the mobile particle essentially undergoes sim-
ple harmonic motion with gradually decreasing amplitude.
Because the oscillation amplitude is much larger than the
range of the interaction A, the mobile particle spends very
little time interacting with the chain, which explains why
the oscillations are almost sinusoidal. The amplitude of the
chain mass motion grows slowly. Intuitively, when the mobile

particle passes the chain mass, the latter is displaced due to the
interaction term. As the amplitude of the mobile particle’s mo-
tion decreases, the speed with which it passes the chain mass
becomes smaller. Consequently, the time of the interaction
grows, leading to an increase of the chain mass displacement.

From the trajectories in the first column of Fig. 2, the total
energy of the two-particle system appears not to be conserved.
However, the total energy of the closed system is distributed
among the mobile particle and the N — oo chain modes. In
our calculations, we do not keep track of all the chain masses
and are, therefore, unable to use the motion of the chain to
compute its energy. This loss of information is a consequence
of integrating out the degrees of freedom into the memory
kernel, which allows us to study an infinitely long system by
only focusing on its single component.

For T > 175, the motion of the two particles appears to be
a superposition of two modes with the slower one being in
phase for the two objects and the faster one being completely
out of phase. Moreover, the amplitude of the oscillations ap-
pears to persist over many cycles, suggesting a lack of energy
dissipation. To confirm that this nondissipative motion is not a
numerical artifact, we explore the long-term system behavior
when |p — 0| < A. In this case, the Gaussian interaction term
can be expanded to yield

ZJTCD() © ’ ’
o(t) = dt'e(t — 1)
ur? J

2 L2 sin Rroj(t—-1)] /
XN; .y [o(z") — o ()],

J
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o
é*(T)=(27T)2{)L—S[G(f)—p(f)]—O(T)}, 19)

where we extended the lower time limit to —oo to focus
on the long-term behavior. Taking the Fourier transform of
this system of equations using the definition g, = F[g(t)] =
Qm)~V2 [% dt e g(1) gives

2w d 2 N/2|:i

T
Po = e ﬁ; 2—%[5(0)—60]‘)—5(60—%-0).,‘)]

2
- 120? — A2 (Po — 0w),
J

—Q2rw)’o, = 2 )2[%(% — Pw) — ow] (20)

We included the factor of 27 inside the exponential to agree
with the argument form of the memory kernel. From the
Fourier transform, we see that only if @ ¢ [@Wmin, ®max], the
delta functions both vanish and the system of equations may
admit persistent real-w solutions. Therefore, we drop the delta
functions to get p, = %(ow — Po)fow With

N/2

2 1 1 »? — w2
Jo= 1 = > (2D
N ; 0 =0} 0=, | ok,

Eliminating p,, and o,, from the system of equations yields

fw(DO o &
ur2 ) oA’

(1 —w2)<1 + (22)

Solving Eq. (22) for the parameters used in the simulation
reveals that there indeed are two persistent modes: one at w ~
0.999wmin and another at w ~ 1.001wy,«. Because these two
modes are outside the phonon band, they do not couple with
the chain modes and, therefore, do not dissipate energy. This
effect persists even when the p/ (z) term is included, provided
the random thermal noise is sufficiently weak. Raising the
temperature further will disrupt this periodic motion, as we
will see below.

B. Dissipation scaling

In the previous section, we discussed dissipation of a single
mobile particle’s energy for a particular choice of system pa-
rameters. We now address how the choice of these parameters
determines the dissipation rate. To make analytical progress,
we focus on the regime where the amplitude of the mobile
particle’s oscillations is substantially larger than the extent of
the interaction potential.

To estimate the amount of energy that the mobile particle
loses after a single encounter with the chain mass, we neglect
the confining potential and assume that the particle travels at a
constant speed from negative infinity so that o (t) = o¢7. This
simplification is reasonable if the gain in the kinetic energy
due to the harmonic trap in the vicinity of the chain mass is
negligible. Next, we assume that the displacement of the chain
mass is sufficiently small so that it can be dropped from the

integral in Eq. (15), leading to

o0 =20 [ arra - elew @)
mJ o do
where we used d®/dp = —d®/do.

To estimate the speed of the chain mass at T = 0 (as the
mobile particle passes the origin), we differentiate Eq. (23)
with respect to T:

, 27 (. ,dd
p0) = — dtT'(=1)—=(607")
% do

—00
4n? 0 ., 4n’d(0)

= — dt'—(opt') = ——. 24)
n J o do

Here, we assume that the time during which the two particles
interact is short compared to the periods of the chain modes,
allowing us to replace I'(—t’) — I'(0) = 2.

The displacement of the chain mass is approximately
P(0)Tie ~ d>(0)kinl/(d()2u), where Ty ~ Aine/00 is the length
of time during which the two particles interact and Ay is
the characteristic width of the interaction potential. Because
the chain mass is confined by a potential well and springs
connecting it to its neighbors, the potential energy associated
with its displacement is approximately proportional to the
displacement squared ~ke¢ [0 (0)Tin]?. Here ke is an effective
spring constant determined by k, «, and u. In our dimen-
sionless formulation, we fix wmin = +/(k/1)/K and wmax =
@k/)/K + («/1n)/K, while allowing u to change. There-
fore, to vary the parameter ©, we must simultaneously vary k,
Kk, and hence ke, such that kg oc . Thus, the energy stored in
the compressed spring is ~[(0)Tiy]*. This energy, originat-
ing from the moving particle, will be dissipated by the infinite
chain and gives the energy loss of the mobile particle during a
single pass: AE ~ /L[dD(O)Aint]z/(dé/Lz) ~ [D(0)Ain)?/ 1E?,
where € = E /liQy ~ 6. Because the frequency of the en-
counters between the two particles is virtually constant owing
to the harmonic trap, the average energy-loss rate is given by
E ~ —wyAE = —[P(0)Ain]*/E?, which yields

2,12 73
() (O))\imj| ’ 25)

E(r)= [eg —Ct

where C is a numerical constant.

To illustrate the quasi-power-law behavior exhibited in
Eq. (25), we perform a series of simulations for a range of
potential widths A and several values of w in both attractive
(P < 0) and repulsive (®y > 0) regimes. We extract the co-
ordinates of the turning points to obtain the time-dependent
amplitude of the oscillations and plot the fractional amplitude
reduction 1 — [0 (7)/00]® vs T in Fig. 3. Based on the scaling
argument above, the trajectory should have slope +1 on a
log-log plot.

Figures 3(a)-3(c) demonstrate the scaling for the repulsive
interaction for a set of parameters X, i, and ®¢ > 0. In addi-
tion to the turning points extracted from the simulations, we
plot fits 1 — [G(‘[)/O’o]6 = Cr(@ok)z/u for C =7 x 107°.
The fact that the same constant C yields good fits for a range
of parameters supports our scaling argument. We see that for
large |®y| and A the offset of the fits becomes worse. This
deviation can be explained by the fact that wider (larger A)
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FIG. 3. Scaling of amplitude decay. The amplitude of the mobile particle at its turning points as a function of time shows a quasi-power-law
behavior: 1 — [0(1)/09]® = Ct(PyA)?/ 1. The dots show data from the numerical simulations and the lines are fits. All the lines in the top
(bottom) row have the same fit parameter C = 7 x 107° (C = 5 x 107?) and slopes of +1 on the log-log axes. The fixed parameters for all the
panels are i, = 2 and wm, = 20. (a), (d) A = 2, o = £500; (b), (e) u = 2, Dy = £500; (¢), ) u =2, 1A = 2.

and stronger (larger |®¢|) potentials lead to longer interaction
times 7. Consequently, the approximations used in deriving
the scaling law become less appropriate. We obtain similar re-
sults for the attractive interaction, as shown in Figs. 3(d)-3(f).
For the attractive potential, the best-fit value of the constant is
smaller, C = 5 x 107°.

The different values of C arise from the difference in
effective interaction time between attractive and repulsive in-
teractions. As an example, we consider the case of A = 2 and
w = 2, corresponding to the yellow data points in Figs. 3(b)
and 3(e). Looking in detail at the first encounter between the
mobile particle and the chain mass, we plot the displacement
of the chain particle p and —d®/do for both signs of interac-
tion in Fig. 4.

The interaction window is fairly short, amounting to about
8% of the mobile particle’s travel time between turning points.
Despite this short time, we see that the force and displacement
curves are rather smooth, justifying our choice of time step in
the calculations discussed in Sec. III B. Although the shapes
of the force profiles that the chain mass trajectories are very
similar between the attractive and repulsive interactions, we
can see that the timescale is slightly longer and the maximum
displacement of the chain mass is larger for the repulsive
interaction. This difference is explained by the order of accel-
eration and deceleration that the mobile particle experiences.
If the interaction is attractive, the mobile particle speeds up,
being pulled forward by the chain mass, and then slows down
as the chain particle “tugs™ on it. Conversely, if the interac-
tion is repulsive, the mobile particle first experiences braking,
followed by an acceleration. Consequently, the mobile particle
moves slower when it passes the chain mass in the repulsive

configuration than it does in the attractive one, meaning that
the effective contact time is larger in the repulsive case. The
difference in the interaction time is directly related to the
displacement of the chain particle and, therefore, the amount
of elastic energy stored in the chain.

Mobile particle incident from o > 0

200 0.2
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FIG. 4. Difference between attractive and repulsive interactions.
Attractive and repulsive interactions with the same strength |®y| and
length scale X lead to slightly different dynamics. A mobile particle
incident from o > 0 experiences a force with nearly identical profile
(with opposite amplitude), but the displacement of the chain particle
is slightly larger for repulsive interactions, and the duration is slightly
longer. This extra displacement leads to slightly faster dissipation, as
seen in Fig. 3. wpin = 2, opax = 20, 0 =2, A = 2, &y = £500.

033057-7



RODIN, OLSEN, CHOI, AND TAN

PHYSICAL REVIEW RESEARCH 4, 033057 (2022)

Full trajectories with identical parameters

Initialized at turning point

Nearly identical trajectories

0.25

100 100

2 (@) (b) (©
k)
= 50 50 -

o

o

® 0 0 - 0.00+

©

£
2 50 -50
Q

(o]
2-100 Ll T T T T -1 00 ) T T T T '025

0 50 100 150 200 250 125 126 127 128 129 130 180 181

Scaled evolution time 7

FIG. 5. The role of history in dissipation. A comparison of two trajectories for wmin = 2, Wmax = 20, u = 2, A =4, and &y = —500. The
blue trajectory starts at oo = 100 at 7 = 0 and the green one at oy &~ 73.5 at T & 126. (a) An overlay of the two trajectories shows an identical
envelope, magnified for a few oscillations in (b). (c) At later times, we see a mild disagreement in the dissipation-free regime.

C. Role of memory

Next, we discuss the impact of the memory term p(7)
on dissipative behavior through two calculations. We start
by computing two particle trajectories with identical system
parameters as in Fig. 2, but where the second particle is
initialized at one of the later-time turning points of the first
particle. This is equivalent to erasing the memory of the par-
ticle at that turning point. We plot the computed trajectories
in Fig. 5 for A = 100 and A, = 73.5. The calculations show
that the large-amplitude trajectories for the two simulations
coincide quite well. Only when the mobile particle falls into
the potential well is there a noticeable difference between the
two scenarios.

Based on this numerical experiment, we can see that the
history of the trajectory in the large-amplitude regime has a
minor effect on the motion of the particle. This result justifies
our approach to the dissipation scaling in Sec. IV B, where we
treated each encounter as independent from all the others. We
might be tempted to conclude, based on this result, that the
memory time plays a rather minor role in dissipation.

To investigate how dissipation is affected by the memory,
we performed a series of calculations using the same param-
eters from Fig. 5, but including only the most recent segment
of time ty. That is, we replaced the integral in Eq. (16)
fo = I:lax((),'[—'[o)' In Fig. 6(a), we plot the amplitude decay
for several values of the memory time, ranging from 7y = 0o
to 7o = 1/20. All of the trajectories exhibit nearly the same
quasi-power-law scaling, with the largest deviation for 7y =
0.51. Based on the specific value of 7, the dissipation can be
either faster or slower than the T = oo case. Choosing a finite
79 leads to small countermovements in the position of the
chain mass as it gradually “forgets” previous interactions. Due
to the decaying behavior of I'(t), this behavior is especially
prominent for short 7y. For specific choices of 7y =~ 0.5, 1, this
motion can lead to pathological behavior as the countermove-
ments occur during a subsequent interaction with the passing
mobile particle. For certain system parameters, we found the
dissipation for pathological 7y was qualitatively different from
the 1y = oo scaling. Obviously, a truncated memory kernel
is rather artificial. While an ideal, isolated physical system
should have 7y = oo, external couplings would lead to faster
decay of the memory kernel I'(t). A suitable short memory

time shows similar behavior to 7y = oo, and also offers the
benefit of easier calculation.

D. Multiple mobile particles

We also explore how the presence of multiple noninter-
acting mobile particles changes their dissipative dynamics.
Initializing the positions of 25 mobile particles starting from
rest with a mean position of 100 and standard deviation of
20, we tracked their resulting motion (see Appendix A for
details). We found that each particle shows roughly the same
quasi-power-law dissipation, with its timescale increased by
the number of other particles “tethered” to the chain mass.
For both attractive and repulsive interactions, the collection
of mobile particles and the chain mass eventually exhibit per-
sistent oscillations with frequencies just outside the phonon
band, just as in the single-particle case.

V. THERMALIZATION

Having developed a good understanding of dissipation in
our model system, we reintroduce the homogeneous thermal
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FIG. 6. The role of memory in dissipation. The amplitude reduc-
tion of the mobile particle at its turning points for wmin = 2, Omax =
20, w =2, A =4, and &, = —500 shows a relatively weak depen-
dence on 1.
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FIG. 7. General example with thermal motion included. Trajectories of a single mobile particle o (7) for Wy = 2, Wmax = 20, © =2,
A =4, &y = —500 with oy = 100 for three temperatures wy: 10~ (left column), 250, (middle column), 2500 (right column) reveal dissipation
and fluctuation. The four rows correspond to different memory times, from top to bottom: oo, 50, 1, and 1/20.

motion term in Eq. (15). To justify our classical approach, we
first verify that the vacuum fluctuations of the chain mass are
much smaller than the characteristic interaction length A:

2 _ 1 Wmax dZ

m: @min

— L el L e (g
MUIT Wmax

L R( k) ()

where KC(x) is the complete elliptic integral of the first
kind. For the system parameters used above, u = 2, ®Wmpin =
2, wmax = 20, we find \/(p?);_, ~ 0.17. Lengths in our sim-
ulations are scaled by /37, and the potential width A = 4, so the
scale of vacuum fluctuations is negligible.

A. Single particle

We start by computing individual particle trajectories with
the same system parameters as in Fig. 2, but now including
the p(7) term in Eq. (18), calculated following the proce-
dure given in Sec. III B. The results are shown in Fig. 7 for
three different temperatures (wy = kgT /Ey = 1072, 250, and
2500, arranged in columns) and four different memory times
(19 = 00, 50, 1, and 1/20, arranged in rows). For a given tem-
perature, the simulations with different memory times have
identical p™ (7).

As expected, increasing the temperature of the chain (going
left to right in Fig. 7) produces a larger amplitude of the

mobile particle motion at later times. Although changing the
memory time does alter the trajectory, the amplitude of the
mobile particle motion remains nearly the same. Qualitatively,
the trajectories for the particles at late times seem to only
depend on the chain temperature. To quantitatively verify that
these systems exhibit fluctuation behavior, we will study the
statistical properties of the trajectory. We expect the mobile
particle’s energy distribution to be determined by the chain
temperature. In particular, it should follow the Boltzmann dis-
tribution P(E') o exp(— %), or P(€) x exp(—&/wr), where
£ is the total energy E of the mobile particle in units of Ej,.
We repeat the calculations in Fig. 7 for a larger set of wr’s:
100, 250, 500, 1000, and 2500 with the same four memory
times using ®; = £500. After calculating the trajectories, we
extract the total energy & for the particle at each of the 1.2 x
10% time steps. In our dimensionless formulation, potential
energy (in units of E),) is given by aﬁa /2 4+ ®(pa, 0j,«), while
the kinetic energy is [(0j,a41 — 0j.a)/ (278)1?/2. To eliminate
the effects of the dissipative portion of the trajectory, we drop
the first 10° steps for the repulsive potential and 1.5 x 103
for the attractive one (as we observed, the repulsive potential
exhibits faster dissipation). Finally, we divide the energies by
wr and build a normalized histogram to extract the probability
distribution P(€) as a function of £/wr. On a plot of In[P(E)]
vs £ /wr, a particle at thermal equilibrium will have slope —1.
For the calculations in the top row of Fig. 8 (with repul-
sive interaction), we observe that the probability distributions
mostly collapse onto a common line with a —1 slope, as
expected. The deviation at low energies is due to the repulsive

033057-9



RODIN, OLSEN, CHOI, AND TAN

PHYSICAL REVIEW RESEARCH 4, 033057 (2022)

Probability distribution In [P(&)]

Memory Tp = 00 70 = 50 T0=1 70 =1/20
O R S )
I 4 v < R " Bty .
A AN . e ¥ ¢ A Repulsive
A Nt~ S I M "N *1 @ =500
° 'w.' e o -
. . ..‘.}rxu.” . o... N —
. ° . .. ¢ ° ° '..o’
. . . h ° - 100
0 1 2 3 4 5 6 0 1 2 3 4 5 6 250
* 500
1000
« 2500
Attractive
by = —500

Scaled energy & /wr

FIG. 8. Energy probability distribution. Logarithm of the probability distribution of total energy per particle £ vs the total energy divided
by the chain temperature @z for Wmin = 2, Omax = 20, © = 2, A = 4, and & = £500. The top (bottom) row contains the results for repulsive
(attractive) interactions. The four columns correspond, from left to right, to 7o = 00, 50, 1, and 1/20. The black lines each have a slope of —1,

_£ . .o . .
corresponding to the Boltzmann distribution P = ¢~ “7 . The collapse of the data points onto the black curve indicates that the mobile particle
follows the Boltzmann distribution with the same temperature as the chain.

interaction between the chain and the mobile particle, so that
the latter never has zero energy. For larger wr, the time be-
tween interactions with the chain mass is longer, so our finite
simulations undersample the rarer high-energy time steps. Un-
like the dissipative case, a short memory time 7 can also give
rise to pathological behavior, particularly for lower tempera-
tures. In this case, the interactions between the mobile particle
and chain mass become more frequent and take longer, so
truncating the memory leads to problematic countermotion.

In the case of attractive interactions, shown in the bottom
row of Fig. 8, we see that for sufficiently high wr’s, we obtain
the expected linear relationship between In[P(€)] and £/ wy.
For lower wr’s, however, there is a qualitatively different be-
havior for negative energies. In this regime, the mobile particle
spends a significant fraction of time in very close proximity to
the chain mass, essentially trapped in the interaction potential.
Consequently, the mobile particle becomes tethered to the
chain particle, and we do not expect it to exhibit the proper
statistics.

For the repulsive case, where the mobile particle does
not get as tightly tethered, another pathology arises. For low
temperatures wr < @y, the mobile particle will spend a large
fraction of time near the chain mass. In this regime, the patho-
logical countermotion produced by truncating the memory
integral has a greater impact on the mobile particle’s motion.
Thus, shorter 7y can lead to anomalously high apparent tem-
peratures, as seen in the top right panel of Fig. 8.

B. Multiple particles

To improve the statistics while also making the system
more realistic, we also performed calculations with 25 mobile

particles, with identical system parameters as in Fig. 8. We
initialized the particles starting from rest, positioned accord-
ing to a normal distribution with a mean of 100 and standard
deviation of 20. To make the comparison between different
simulation runs more robust, we used the same starting posi-
tions by employing the same random seed.

To illustrate the rate of thermal equilibration, we plot the
average energy per particle as a function of time for a re-
pulsive potential in Fig. 9. Except in the case of wy = 50,

25 mobile particles

N
o

-
[¢)]

[¢)]

Scaled energy per particle £ /wr
=)

0 500
Scaled evolution time 7

1000

FIG. 9. Thermal equilibration of mobile particles. Average en-
ergy per mobile particle in an ensemble of 25 mobile particles for
Omin = 2, Wmax = 20, w =2, A =4, and &, = 500. The trajectories
approach £/wr =1 as the temperature of the particle ensemble
approaches wr.
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FIG. 10. Energy probability distribution for an ensemble. Log-
arithm of the probability distribution of total energy per particle vs
the total energy per particle divided by the chain temperature wy for
Omin = 2, Omax = 20, © =2, A = 4, and &, = £500 obtained from
a simulation with 25 mobile particles. The top (bottom) row contains
the results for repulsive (attractive) interactions. The left column
corresponds to Ty = 0o, and the right one to 7o = 1/20. tp = 1/20
is essentially the Markovian limit, where the chain mass responds to
the interaction with the mobile particle and “forgets” the interaction
immediately after. The black lines have slopes of —1, corresponding

_E
to the Boltzmann distribution P = e *7 .

where the repulsive interaction potential substantially shifts
the minimum attainable energy of the mobile particles, each
of the ensembles eventually approaches thermal equilibrium
& — or. We see that as wr increases, the equilibration time
decreases substantially. Intuitively, this pattern makes sense,
as the mobile particles dissipate more energy in the case of
lower wr. We do not show results of similar calculations
with an attractive potential because once the particles become
tethered to the chain mass, their negative energy significantly
skews the average.

Next, we construct the probability distribution of the to-
tal energy per particle, similar to Fig. 8, but for just two
memory times 79 = oo, 1/20. We expect that the addition
of multiple mobile particles will reduce the effect of anoma-
lous countermotion caused by truncating the memory. In the
single-particle case, the countermotion was especially prob-
lematic because it tended to reverse the energy transfer of
the previous interaction. In the many-particle case, however,
the numerous intervening interactions tend to overwhelm the
countermotion as the response to 24 other particles dwarfs the
countermotion originating from a single contact. Put differ-
ently, from the point of view of a given particle, additional
interactions conceal the countermotion by effectively adding
randomness to the chain mass’ trajectory. We see from the
results in Fig. 10 that the 25-fold increase in the number
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FIG. 11. Cloud size. Root-mean-square displacement of the mo-
bile particles for repulsive (top) and attractive (bottom) interactions
with the chain. The data are obtained from the simulations used
to produce the left column of Fig. 10. The cloud size within the
harmonic trap roughly matches the chain thermal energy scale o2 ~
wr.

of data points improves the agreement with the Boltzmann
distribution. We also observe that reducing the memory from
infinity to 1/20 does not substantially change the resulting
distribution, except for at low temperatures.

Although we did not include any interaction between the
mobile particles, they do, in fact interact indirectly via the
chain. To ensure that this interaction does not impact the indi-
vidual particle statistics by giving rise to collective behavior,
we found that the cross correlations of the particle positions
are rather small (see Appendix B).

Naturally, raising the temperature of the system increases
the oscillation amplitude of the mobile particles, leading to a
larger cloud size. In a harmonic trap, the cloud size can be
used as a proxy for the temperature. To illustrate this increase,
we plot the root-mean-squared displacement o5 for a range
of temperatures for both attractive and repulsive interactions
in Fig. 11. We also investigate cloud heating by initializing
the 25 particles normally distributed around the origin with
a standard deviation of 1 and tracking the increase of oypm
over time in Fig. 12. We see that the final o, for different
temperatures is the same regardless of the initial positions of
the mobile particles.

C. No memory

Based on our simulations, we see thermalization for a wide
range of memory times 7y, even in the Markovian limit at
Tp —> Tin, Where Ty, is the typical particle-chain interaction
time. Computationally, it is much simpler to eliminate the
recoil term altogether, setting p(t) = p (r). However, we
find that in the absence of a recoil term, the mobile particles
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FIG. 12. Cloud size increase. Root-mean-square displacement of
the mobile particles for the repulsive (top) and attractive (bottom)
interaction with the chain. The system parameters are the same as
in Fig. 11, but now the particles are initialized close to the bottom
of the potential well. The final cloud size for each temperature
and interaction agrees with the corresponding result from Fig. 11,
indicating that the initial conditions do not play a role in determining
the spread of the mobile particles. Again, the final cloud size within
the harmonic trap roughly matches the chain thermal energy scale
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do not approach a Boltzmann distribution of energy, even after
very long times, as seen in Fig. 13. In these simulations, the
average energy per particle remains roughly constant, as seen
in the insets, in contrast to the dissipation seen in Fig. 9. In
practical terms, any experimental implementation of such a
model requires some form of feedback to display thermaliza-
tion.

VI. PROPOSED IMPLEMENTATIONS

Several experimental platforms for investigating 1D
physics have arisen in the past few decades. Here we outline
some candidate systems that could be used as realizations to
validate the simple model we have developed. We discuss
some of the technical hurdles of each platform, as well as
possible avenues for extension.

A. Trapped ion and dimple potential

One of the most common trapping geometries for ions, the
linear Paul trap, confines ions to motion in a 1D harmonic
potential [27]. Another geometry using surface electrodes is
emerging as a platform for quantum computing, and can be
engineered to generate tunable potentials [28] or to couple
to light [29]. In both trap geometries, it is possible to load a
small number of ions, or even a single ion, into the trap. These
trapped ions take the role of the mobile particle in our model

Repulsive ®; = 500

-6

Attractive & = —500 - 500
1000

= 2500

Probability distribution In [P(£)]

Scaled energy &/wr

FIG. 13. Simulations without memory. Logarithm of the proba-
bility distribution of total energy per particle vs the total energy per
particle divided by the chain temperature wy for the same parameters
as in Fig. 10 but with rp = 0. The insets show the evolution of energy
per particle with time. The lack of data collapse onto the Boltzmann
distribution indicates the absence of thermalization.

since they move axially in a quasi-1D harmonic potential.
Typical axial trap frequencies vary from several kHz [30] to
the MHz regime [31], with motional heating rates as low as
a few quanta/s at cryogenic temperatures [32]. In order to
implement the effective bath coupling, the trap potential near
the center could be modified using a small dc electrode or
a tightly focused laser beam, which would produce a dimple
potential [28,33].

By monitoring the position of the ion using a weak probe
beam [34,35] or fluorescent light [36], the position and
depth of the dimple could be modified with a feedback loop
according to the dynamics described in Eq. (15). Similar feed-
back loops using large-scale electric fields produced by trap
electrodes have been implemented in two main ways: cold
damping [37] and parametric cooling [34].

In this implementation, adding multiple mobile ions to
the trap is straightforward. However, the Coulomb coupling
between mobile ions is much stronger than the effective bath
coupling; we will explore this strongly interacting case in
future work. In contrast to other cooling methods, our scheme
only perturbs the trap locally. It could thus potentially be
useful in contexts where the trap frequency needs to remain
stable, such as in ion-based sensing.
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B. Hybrid atom-ion system

Another experimental system that has been extensively
studied recently consists of a small number of ions immersed
in a cloud of neutral atoms [38,39]. These hybrid systems are
useful for studying collision dynamics, or to use the ions as
sensitive probes of the cloud [40,41]. In a typical implemen-
tation, an ion is confined using a Paul trap, with neutral atoms
overlapped using optical potentials [42]. However, since the
radio-frequency potential for the ion is much deeper than the
optical trap experienced by the neutral atoms, the length scale
for ion motion is smaller than the typical neutral cloud size.
Recent experiments have employed optical traps for both the
ion and the neutral cloud [43-45]. An ion confined to quasi-
1D motion in an optical dipole trap that intersects a cloud of
neutral atoms that are confined in a separate optical dipole
trap could realize our model. The large number of degrees of
freedom in the neutral cloud would let it serve as an effective
bath that couples to the ion’s secular motion via collisions
at the trap center, where the neutral cloud’s size and density
would determine the parameters of the coupling A, ®,. The
initial kinetic energy of such an ion is on the order of 100
1K /kg, and the temperature of a typical ultracold cloud is
~1 uK.

Using a similar setup, but in another regime, where the ion
undergoes many collisions with the neutral atoms, a similar
damping effect occurs, known as buffer gas cooling [46—48].
One potential pitfall of this approach is that the ac Stark shift
induced by the neutral cloud’s trapping light will induce a
static dimple in the ion’s potential. This additional dimple
could enhance or slow down the dissipation rate, depending
on details of the trap laser. One way to circumvent this issue
would be to trap the neutral cloud using a laser at a magic
wavelength of the ion [49].

Similar to the ion and dimple approach, this platform can
easily scale to multiple mobile particles, and the properties
of the bath coupling can be tuned. For example, the neutral
atom cloud size and density can be varied by changing the
optical trap power, and its temperature can extend from the
thermal to quantum regimes. We will explore the implications
of a quantum bath in future work.

C. Neutral atom bright soliton and dimple

Another quasi-1D system with slow dynamics is bright
solitons of bosonic neutral atoms in optical waveguides.
Bright solitons have been implemented with several atomic
species [50-54], and are commonly trapped in a far-detuned
optical dipole potential which provides harmonic confine-
ment. The lifetime of such solitons can be as high as 3 s,
apparently limited by atom loss due to background collisions
[51]. Several groups have also introduced optical dimple po-
tentials [55-58], where the size of the dimple is usually >2
pm (smaller than a typical soliton size of ~10 wm) and the
depth or height of the dimple can be tuned over four orders of
magnitude [59].

The harmonic axial motion can be varied with a com-
bination of magnetic fields and optical potentials from
~5—100 Hz. With nondestructive techniques, up to 50 images
of a cloud can be acquired [60], allowing many oscillation
periods of feedback.

This scheme, due to its long timescale for dynamics, would
offer the easiest route toward imaging-based feedback, and
would allow the most detailed exploration of feedback involv-
ing very short memory 7.

D. Neutral atoms in waveguide with dimple

A similar implementation involving quasi-1D motion of
the mobile particles involves an optical waveguide, but with
a large number of neutral atoms moving independently. This
system has the same general setup as the soliton experiments
above; however, the dynamics of the mobile particles will
be complicated by two extra radial degrees of freedom. We
suspect that a modulated dimple would dissipate energy from
the axial motion, and weak interactions between the mobile
atoms could lead to dissipation in all three dimensions. In the
experiments described in [61] and further analyzed in [62],
a sinusoidally modulated dimple beam leads to heating of a
BEC. This type of modulation is closely related to Floquet
engineering (for a review, see [63]). With some modifications
to the experimental protocol, this system could load a thermal
gas of atoms, observe the cloud density through nondestruc-
tive imaging, then change the dimple beam position based
on Eq. (17), and measure the resulting distribution of kinetic
energies in the cloud through standard time-of-flight imaging.

E. Neutral atoms in an optical lattice with dimple

To restrict the motion of the mobile atoms more closely to
1D, they could be confined using a two-dimensional (2D) op-
tical lattice. Around 20-100 atoms would undergo harmonic
motion in each of the ~1000 1D tubes, with ,, tunable from
~1—1000 Hz. For a strong enough optical lattice, the energy
scale of transverse motion ~100 kHz could be tuned far above
other energy scales in the system. A light sheet focused very
tightly along the axis of the atoms’ motion could produce a
dimple trap with uniform depth across all of the 1D tubes,
yielding many independent realizations of our model system.

One of the major challenges of this approach is im-
plementing the feedback necessary to observe dissipation.
Inhomogeneities would lead to slightly different €2), in each
of the tubes, precluding effective feedback with a single dim-
ple potential. To make the system more uniform, the optical
lattice depth could be tuned using optical techniques [64].

F. Neutral atoms and optical cavity

An experimental tool that could more directly probe the
effects of the bath modes in our simulations is an optical
cavity. If a multimode cavity [65] were aligned transverse
to an optical waveguide, the moving atoms would couple to
the cavity modes only near the center of the trap. The cavity
length could be chosen to tune the energy scale of cavity
modes (Wmin, Wmax i our model) relative to the kinetic energy
of the mobile particles.

The cavity modes could potentially also be populated in
a controlled way to emulate different chain temperatures (or
nonequilibrium states). These modes might even be control-
lable in a feedback loop similar to [66].
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VII. CONCLUSION

Using a simple model of mobile particles in a harmonic po-
tential coupled to a 1D chain of masses, we have demonstrated
both dissipation and fluctuation behaviors using classical nu-
merical simulations. In the absence of thermal fluctuations,
individual particles dissipate energy in a quasi-power-law
fashion, with a characteristic time that generally follows a
simple scaling based on system parameters. With multiple
noninteracting mobile particles, each of them dissipates en-
ergy, with a timescale determined by the number of particles
already lying near the chain mass.

Once thermal fluctuations are introduced in the chain mo-
tion, we find behavior reminiscent of thermal equilibration.
First, as long as the mobile particles are not trapped in the
interaction potential, they approach a Boltzmann distribution
of energy, set by the temperature of the chain. Next, the
characteristic size of a cloud of mobile particles in the har-
monic potential eventually matches the thermal energy scale
of the chain as well. For all reasonable choices of the memory
time, the system exhibits the same thermalizing behavior. In
contrast, with no memory, the mobile particles’ motion is
not strongly influenced by the chain, and does not reach a
Boltzmann distribution.

We showed that this minimal system exhibits fluctuation
and dissipation behavior for a wide range of system param-
eters. We suspect that the specific form of the chain-particle
interaction has little effect on the resulting dynamics. How-
ever, for some specific interactions, such as a delta-function
potential, a different numerical approach will be necessary.
We also suspect that the mode structure of the chain has no
qualitative impact on the mobile particle trajectories, and will
explore this claim in future work.

We proposed several experimental platforms where this
minimal setup could be realized, though each introduces some
potential complications. To model more realistic systems, we
will explore the case where the mobile particles interact with
one another in future work. We will also explore how multi-
ple couplings to the chain affect the resulting dynamics. In
this case, the harmonic confinement can be removed, and
we expect to observe signatures of diffusion of the mobile
particles, in addition to dissipative behavior. This modification
will allow us to explore indirect interactions between mobile
particles mediated by the chain. Additionally, we can explore
the appearance of friction and extract the effective friction
coefficient. Another natural extension is to modify the struc-
ture of the bulk by either altering the phonon dispersion or by
increasing the dimensionality of the system. Specifically, the
larger number of phonon modes in higher dimensions should
lead to faster dephasing, making the memory less important.
In several of the proposed implementations, the scales of
the system approach the quantum regime, which will require
significant modifications to our approach.

More broadly, this work is a step in developing our un-
derstanding of drag and diffusion in solid systems in a
non-Brownian regime with nonlinear interactions. By for-
mulating the problem using microscopic ingredients, we are
able to explore the validity of the approximations commonly
employed in diffusion problems in solid systems. From a
practical standpoint, improved understanding of dissipative

processes in solid materials has a direct impact on our ability
to design efficient ionic conductors required for the fabrication
of solid-state batteries.
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APPENDIX A: MULTIPARTICLE DISSIPATION

To explore how a collection of particles dissipates energy
via their interaction with a single chain mass (with no thermal
fluctuations), we introduce 25 mobile particles starting from
rest with a mean position of 100 and standard deviation of
20. The trajectories of the mobile particles are plotted simul-
taneously along with the chain mass for both attractive and
repulsive interactions in Fig. 14.

For attractive interactions, similar to the single-particle
case, the mobile particles settle near the chain mass, reaching
|oj — pl ~ 1 one by one. Individual particles show qualita-
tively similar dissipation, roughly following quasi-power-law
trajectories. After each particle dissipates most of its energy,
the collection of masses then oscillates with a persistent am-
plitude, similar to the behavior seen in Fig. 2.

The motion of the chain mass in this regime exhibits
two modes which lie further outside the phonon band than
the ones observed in Fig. 2. Following the steps leading
to Eq. (20), we obtain that p, = %fw Zj(crj,w — po) and

(1—w®— §)0j0+ Hp, =0, where j € [1, P] runs over
the mobile particles in the Gaussian well, leading to

l—a? -2 0 ) Ol.w
Y@ &, ;
0 l—w +2 n 02,0
_%fw _%fw 1+P%fw Pow
=0. (A1)

Taking the determinant of the matrix and setting it equal to

zero yields (P — 1)-degenerate modes withw = /1 — % and

two more modes with frequencies obtained by solving

fw(DO _ E
ur2 ) a2’

(1 —w2)<1+P (A2)
For the degenerate solutions, the system parameters yield
w ~ 5.68, which lies within the phonon band. As such, this
solution will give rise to decaying oscillations, in accordance
with Eq. (20). Solving Eq. (A2) for P = 24, we get two so-
lutions: one with w ~ 1.65 and the other with w ~ 25.4. This
prediction is borne out in our simulations, as seen in Fig. 14(c)
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FIG. 14. Dissipation for a collection of particles. 25 particles are initialized from rest following a normal distribution with mean of 100
and standard deviation of 20. The system parameters are Wmin = 2, Wmin = 20, © = 2, A =4, and ®y = £500, with the top (bottom) row
corresponding to repulsive (attractive) interaction. The initial positions for the mobile particles are the same for both simulations.

by counting the fast and slow oscillations. As before, because
the two frequencies lie outside the phonon band, the energy is
not dissipated. Increasing P further pushes the w’s away from
the phonon band.

For the repulsive case, the situation is somewhat more
complex. Some of the mobile particles settle on the left side
of the chain mass, while the rest settle on the right, con-
fined on one side by the chain mass and on the other by the
harmonic potential. The equilibrium positions depend on the
exact split of the particles between left and right and determin-
ing their locations requires solving transcendental equations.
Moreover, the equivalent of Eq. (19) for the repulsive case
is substantially more complicated when multiple particles are
involved. Hence, we do not perform a detailed analysis for the
repulsive case. Instead, we simply demonstrate the presence
of persistent oscillations for the repulsive case in the bottom
row of Fig. 14.

We observe that, unlike the single-particle simulations, the
dissipation for the repulsive interaction is not faster than the
attractive one. Given that in the single-particle case the differ-
ence in the dissipation rate between the two signs came from
a slightly longer effective interaction time for the repulsive
interaction, this effect is easily disrupted in the presence of
multiple mobile particles. A closer look reveals that the re-
pulsive interaction actually exhibits slower dissipation. The
reason behind this difference is the uneven deposition of
the mobile particles on the two sides of the chain mass. In
the attractive case, the mobile particles that have fallen into the
Gaussian well are distributed without any particular order with
respect to the chain mass, as can be seen from Fig. 14. Conse-

quently, they do not substantially impede the minute motion
of the chain mass in response to the fast-moving nontethered
particles. For the repulsive potential, on the other hand, more
mobile particles may settle on the positive side of the chain
mass than on the negative. Because of the uneven distribution,
the chain mass’ energy minimum is slightly to the left of
zero. As a result, the motion of the chain mass is restricted
by the mobile masses on one side and by the compressed «
spring on the other. This increased confinement reduces the
ability of the chain mass to move, reducing its dissipation
ability.

APPENDIX B: CORRELATIONS

To assess the validity of treating the mobile particles in
the ensemble as independent, we calculate the position cor-
relations for all the runs in the left column of Fig. 10. We
then average the 25 autocorrelation and 600 cross-correlation
functions for each wy and ®( and plot the results in Fig. 15.
We observe that the autocorrelation functions exhibit an ex-
pected decaying behavior, with the decay rate generally being
slower for higher temperatures. This decay rate dependence
on temperature can be attributed to a larger speed with which
the mobile particles pass the chain mass, leading to a smaller
perturbation. The cross-correlation are much smaller than the
autocorrelations. The only exception is the lowest temperature
for the attractive interaction, where the mobile particles fall
into the Gaussian well and oscillate together. The small mag-
nitude of the cross-correlation in the relevant simulation run
warrants the treatment of the mobile particles as independent.

033057-15



RODIN, OLSEN, CHOI, AND TAN

PHYSICAL REVIEW RESEARCH 4, 033057 (2022)

Repulsive ¢g = 500

i
‘1 \‘Hh w“.ﬂ‘jm E M W\ %‘W M i & I

0-“

0.5

it
‘M” Il “H‘HHHHH\‘

"‘j"“f,',}“\’i”:”if'ni IARARAA

-0.5 1

-1.0'

Attractive &5 = —500

Average autocorrelation

0 50 100
Time separation A1

Average cross-correlation

0.5
MAMMWM_AMMMM o ITTTTTYIVITITIT IYYTTTYTYIVITITITITVIVIVITITIT
wr
-0.5 T - 100
250
- 500
0.5 1000
AM — 2500
! MMMMMAM MWMMM&MMMA“ AV
| i WWWW”W”W O R T T U

0 50 100

FIG. 15. Correlation functions of a multiparticle ensemble. Using the data employed to generate the left column in Fig. 10, we calculate
correlations between all the particle trajectories for every run. The autocorrelation plots are obtained by averaging 25 autocorrelations for each
run, while the cross-correlation are the averages of the 600 cross-correlation. The autocorrelation exhibits a decaying oscillatory behavior with
the decay being the consequence of the chain-induced perturbation. The autocorrelation for repulsive interaction at low temperatures does not
change sign because the mobile particle never passes to the other side of the chain mass.
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