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Minimal model of drag in one-dimensional crystals
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Using a nonperturbative classical approach, we study the dynamics of a mobile particle interacting with an
infinite one-dimensional (1D) chain of harmonic oscillators. This minimal system is an effective model for
many 1D transport phenomena, such as molecular motion in nanotubes and ionic conduction through solid-state
materials. As expected, coupling between the mobile particle and the chain induces dissipation of the mobile
particle’s energy. However, both numerical and analytic results demonstrate an unconventional nonmonotonic
dependence of the drag on particle speed. In addition, when this system is subjected to a constant bias, it supports
multiple steady-state drift velocities.
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I. INTRODUCTION

In general, transport through a medium is accompanied by
energy loss [1], leading to many familiar phenomena such as
aerodynamic drag and friction. Most classical formulations
of dissipation, with the notable exception of friction, focus
on liquid or gaseous media [1,2]. In these models, the size
and energy scales of the moving object often significantly
exceed those of the microscopic degrees of freedom (atoms
and molecules of the medium). This scale difference allows
a series of simplifications, such as treating the medium as a
continuous substance and regarding the drag force as local in
time [3–5]. However, if the size of the mover is smaller than
or comparable to the interatomic spacing of the medium, as
in many solids, we cannot treat the medium as a continuous
fluid. Many of these solid systems also exhibit significant
correlations, which can make the drag nonlocal in both time
and space. If the mover is an ion, the size and energy scales of
the mover and the solid’s ions become comparable, requiring
that their dynamics are treated on equal footing, complicating
the problem substantially.

A relevant example of such a scenario is ionic transport
through solids, which has been garnering attention recently
in the context of solid-state batteries [6–8], as a part of
the search for more sustainable energy storage technologies
[9,10]. An important component of these batteries is the
solid electrolyte: an electronic insulator that can conduct ions
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and acts as a separator between the anode and the cathode.
The most commonly used tools for studying ionic motion in
ionic conductors are classical molecular dynamics (MD) and
ab initio molecular dynamics simulations [11–21]. These
studies are particularly useful for elucidating which lattice
structures produce lower energy barriers for the mobile ions
and how the lattice dynamics impact the ionic transport. These
techniques are, however, less suitable for studying dissipation
in the long-time limit as the simulations are typically restricted
to time periods on the order of nanoseconds. Therefore, an
analytical approach that makes it possible to explore the
emergence of dissipation in solid materials while treating the
motion of the solid’s ions and the current carriers on equal
footing is desired.

Earlier work [22] related the mobile ion’s energy dissipa-
tion to the potential profile through which it moves. The study
assumed that the interaction between the mobile ion and the
solid could be viewed as local in time to make the problem
tractable. Here, we relax this assumption by focusing on the
simplest crystal, a 1D atomic chain, shown in Fig. 1.

We start by demonstrating the emergence of drag in a 1D
crystal using numerical calculations and compare the results
to the predictions of an analytical model in the absence of ther-
mal motion. We show that the interplay of geometry and the
structure of the crystal lead to an unconventional dependence
of drag on speed, where the energy loss is nonmonotonic
in the velocity, decreasing with higher speeds. Furthermore,
we predict that applying a bias to the system gives rise to
multiple drift velocities, the values of which are determined
by the crystal parameters. Numerical confirmation of this
prediction lends credence to our model as an appropriate tool
for the problem, paving the way for subsequent studies focus-
ing on higher dimensions and the role of thermal effects on
transport.

The 1D crystal model is easy to study both analyti-
cally and numerically, providing a valuable platform for
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FIG. 1. Schematic of the system. A mobile particle of mass M
moves along a periodic 1D chain of N → ∞ identical masses m, sep-
arated by distance a at equilibrium. Each chain mass is confined by a
harmonic potential with force constant κ , in addition to coupling to
its neighbors harmonically with force constant k. The displacement
of each mass from its equilibrium position is rg. The N oscillatory
modes of the chain act as a bath, absorbing the mobile particle’s
energy due to the interaction U .

developing an intuitive understanding of the dissipative mo-
tion in crystals. Being classical, the system is tractable even
when the interaction between the mover and the framework
is nonlinear, unlike some well-established quantum models,
such as Caldeira-Leggett [23] and Hu-Paz-Zhang [24], as well
as more recent works [25,26] that rely on a linear coupling for
integrating out the medium degrees of freedom.

Our model could be adapted to describe a range of ex-
perimentally relevant systems. In some highly anisotropic
ionic conductors, current-carrying ions travel along 1D
channels [27–30] or nanowires [31], similar to motion in
nanotubes of atoms [32–35], simple molecules [36,37], or
fullerenes [38,39].

In Sec. II, we derive the equations of motion for a collec-
tion of mobile particles traveling through a potential landscape
generated by a vibrating lattice of an arbitrary dimensionality.
We then simplify the expressions to focus on the relevant
one-dimensional system in Sec. III. In Sec. IV, we demon-
strate the dissipative motion of a particle along the chain and
derive an analytic expression for the particle’s energy loss. We
validate the analytic expression in the single collision (Sec. V)
and long-time (Sec. VI) limits. Conclusions can be found in
Sec. VII.

We perform all our calculations using the JULIA program-
ming language [41] and make our code available at Ref. [40].
Due to their size, the output files are not included in the
repository. The computational procedure and the justification
for our parameter choice are outlined in Appendix. Our plots
are visualized using Makie.jl, [42] employing a color scheme
suitable for color-blind readers, developed in Ref. [43].

II. GENERAL MODEL

The general model used to describe the motion of mobile
particles through a framework (or lattice) of masses with
vibrational modes is the same as the one used in Refs. [22,44].
The starting point is the Lagrangian

L = TM (Ṙ) − VM (R) + TF (ṙ) − VF (r) − U (r, R, t ), (1)

where r =⊕ j=1 r j and R =⊕ j=1 R j are vectors whose ele-
ments are the displacements of all the framework masses from
their equilibrium positions and the positions of the mobile par-

ticles, respectively. TM (Ṙ) and TF (ṙ) are the kinetic energies
of the mobile particles and framework masses, and VM (R) and
VF (r) are the time-independent potential energies for the two
groups of objects. Finally, U (r, R, t ) is a general potential en-
ergy that describes the interaction between the framework and
mobile particles, as well as any time-dependent perturbations.

For the mobile particles, the equations of motion take a
straightforward form

↔
MR̈ = −∇R[U (r, R, t ) + VM (R)]. (2)

Here,
↔
M =⊕ j=1 Mj 1

↔
D is a block-diagonal matrix where Mj

is the mass of the jth mobile particle and D is the system
dimensionality.

The treatment of the framework is somewhat more in-
volved given its infinite size. We begin by neglecting
interactions with the mobile particle to find a homogeneous
solution. Rewriting the framework Lagrangian using the har-
monic approximation yields

TF (ṙ) − VF (r) → 1
2 ṙT ↔mṙ − 1

2 rTV
↔

r, (3)

with ↔m =⊕ j=1 mj 1
↔

D, where mj is the mass of the jth

framework mass and V
↔

is the harmonic coupling matrix.
Equation (3) produces the homogeneous equation of motion
↔mr̈ = −V

↔
r, which can be transformed into a symmetric eigen-

value problem by first defining r̃ = ↔m
1
2 r so

¨̃r = −�2
j r̃ = −↔m− 1

2V
↔↔m− 1

2 r̃ ≡ − ˜
V
↔

r̃, (4)

with normalized eigenvectors ε j and corresponding eigen-
values �2

j . Consequently, we have r̃(t ) = ε
↔

ζ(t ), leading to

r(t ) = ↔m− 1
2 ε
↔

ζ(t ), where ζ(t ) is a column vector of normal
coordinates giving the amplitude of each mode and ε

↔ =
[ε1, ε2, . . . ] is a row of column vectors ε j .

Equipped with a basis of homogeneous solutions, we now
include U (r, R, t ) in the framework equation of motion to
give the full equation of motion

↔mr̈ = −V
↔

r − ∇rU (r, R, t )

→ ζ̈ = −↔
�2ζ − ε

↔−1↔m− 1
2 ∇rU (r, R, t ), (5)

where
↔
�2 = ε

↔−1 ˜
V
↔

ε
↔ is a diagonal matrix of the squared

eigenfrequencies. For a single normal coordinate, the equa-
tion of motion takes the form of a forced harmonic oscillator
ζ̈ j = −�2

jζ j − f j . Using the Green’s function for a harmonic
oscillator

Gj (t, t ′) = sin[� j (t − t ′)]
� j

�(t − t ′), (6)

we obtain the solution to the driven oscillator problem

ζ j (t ) = ζ H
j (t ) −

∫ t

dt ′ sin[� j (t − t ′)]
� j

× [ε↔−1↔m− 1
2 ∇rU (r, R, t ′)] j, (7)

where ζ H
j (t ) is the homogeneous solution. The subscript j

at the brackets indicates that we pick out the jth element
of the column vector. Because ε

↔ is a row of normal-mode
eigenvectors, it is an orthogonal matrix if the eigenvectors
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are real and a unitary matrix if the eigenvectors are complex.
Taking the more general case of complex eigenvectors, we
replace ε

↔−1 → ε
↔† and get

ζ j (t ) = ζ H
j (t ) −

∫ t

dt ′ sin[� j (t − t ′)]
� j

ε†
j
↔m− 1

2 ∇rU (r, R, t ′).

(8)

Finally, using r(t ) = ↔m− 1
2
∑

j ε jζ j (t ), we obtain

r(t ) = ↔m− 1
2

∑
j

ε jζ
H
j (t )

−
∫ t

dt ′↔m− 1
2 G
↔

(t − t ′)↔m− 1
2 ∇rU (r, R, t ′), (9)

G
↔

(t ) =
∑

j

ε jε
†
j

sin(� jt )

� j
. (10)

Equation (9) gives r(t ) as a combination of a homoge-
neous trajectory and a memory term originating from the
framework’s interaction with the mobile particles. This term
depends on the entire past history of the system, and the
memory kernel G is given by Eq. (10).

Formally, for an infinitely large system, r(t ) contains an
infinite number of components. However, because we are
primarily interested in the motion of the mobile particles, we
only need to keep track of the components of r(t ) which enter
Eq. (2). Our memory formulation allows us to compute only a
subset of the framework coordinates while retaining an infinite
number of degrees of freedom. This focus makes the problem
manageable, while retaining the framework’s ability to act as
a thermal bath and eliminating any periodic effects that could
arise in a finite-size system.

The homogeneous solution for a single normal mode ζ j ,
described by the Lagrangian Lj = ζ̇ 2

j /2 − �2ζ 2
j /2, is ζ H

j (t ) =
Aje−i� j t−iφ j . Here the phase 0 � φ j < 2π is determined by
boundary conditions and the amplitude of the mode Aj is de-
termined by the thermodynamic properties of the framework.
To generate the r(t ) originating from the thermal motion, we
obtain a set of φ j and Aj that correctly reflects the system’s
thermodynamics. The phases φ j are sampled from a uniform
distribution [0, 2π ). For Aj , we recall that the amplitude is
related to the total energy of the oscillator mode. By treating
the possible energies of each mode as a discrete spectrum,
following the solution of the quantum mechanical harmonic
oscillator, we set the amplitude to a function of the number
of quanta n: Aj (n). Using the familiar result for a quantum
harmonic oscillator 〈Re[ζ j (t )]2〉 = h̄

� j
[nB(� j ) + 1

2 ], we find

that Aj (n j ) =
√

n j + 1
2

√
2h̄
� j

, where n j is an integer obtained

from the probability distribution e−n� j/�T .

III. 1D CHAIN

Restricting our attention to 1D crystals, the role of the
framework will be played by an infinitely long periodic chain
of N → ∞ identical masses m separated by distance a and
connected by identical springs with force constant k. In ad-
dition to being restricted to one-dimensional motion along
the length of the chain, each chain mass is confined by an
external harmonic potential with force constant κ to suppress

zero-frequency modes which can cause issues in low-
dimensional systems. For such a system, the vibrational
eigenmodes have frequencies

� j =
√

�2
slow + (�2

fast − �2
slow

)
sin2

(
q ja

2

)
, (11)

with corresponding normalized eigenvectors εg, j = eiq j ag/
√

N
for q j = 2π j/aN with 1 � j � N , where 1 � g � N is the
index of the chain mass. Here, �fast = √

4k/m + κ/m and
�slow = √

κ/m are the maximum and minimum frequencies
of the eigenmodes.

The structure of the system provides natural time and
length scales. We express all frequencies in terms of �slow,
times in terms of tslow = 2π/�slow, lengths in terms of the
quantum oscillator length lslow = √

h̄/m�slow, and energies
in terms of Eslow = h̄�slow. We also assume that all mobile
particles have the same mass M, expressed in terms of m as
μ = M/m. We assume that the interaction terms do not carry
an explicit time dependence and are restricted to pairwise
couplings between the chain masses and the mobile particles
U (r, R, t ) =∑ jk U (rk, Rj ). Then, rewriting Eqs. (2) and (9)
in terms of the characteristic quantities yields

ρ(τ ) =
∑

j

ε j

√
n j + 1

2

√
2

ω j
e−2π iω jτ+iφ j

− 2π

∫ τ

dτ ′�
↔

(τ − τ ′)∇ρ�[ρ(τ ′), σ(τ ′)], (12)

�
↔

(τ ) =
∑

j

ε jε
†
j

sin(2πω jτ )

ω j
, (13)

σ̈ j (τ ) = −(2π )2 1

μ

∑
k

d

dσ j
�[ρk (τ ), σ j (τ )], (14)

where we used the thermodynamic form of the homo-
geneous component. Here, ρ = r/lslow, σ j = Rj/lslow, τ =
t/lslow, ω j = � j/�slow, � = U/Eslow, and �

↔ = G
↔ · �slow The

memory kernel �
↔

(τ ) is a Toeplitz matrix whose nth diagonal
is given by

�n(τ ) = 2

π

∫ π
2

0
dθ cos(2nθ )

×
sin
(
2πτ

√
1 + (ω2

fast − 1
)

sin2 θ
)

√
1 + (ω2

fast − 1
)

sin2 θ

. (15)

Physically, Eq. (15) acts as a propagator: following an impulse
to the lth chain mass at time τ0, it describes the displacement
of the (l + n)th chain mass at time τ0 + τ .

Because �
↔

(t ) describes the propagation of perturbations
along the chain, we explore the rate of this propagation by
considering the group velocity d�/dq. For the dispersion
given by Eq. (11), the group velocity is not constant. Taking
the second derivative of the dispersion, we find that that the
group velocity is maximum for sin2(qa/2) = �slow/(�slow +
�fast ) and is equal to (�fast − �slow)a/2, or πα(ωfast − 1)
in terms of dimensionless quantities with α = a/lslow. In the
absence of the confinement κ → 0 (�slow → 0), the fastest
modes are the long-wavelength sound waves, as expected.
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FIG. 2. Impulse propagation. Response of chain atoms to an
impulse at τ = 0, n = 0 for several τ > 0, shown in different colors.
The points indicate the memory kernel �n(τ ) for a system with
ωfast = 10. The vertical lines at n = τπ (ωfast − 1) coincide with the
leading edge of the response, indicating that the disturbance in the
chain propagates with the speed of the mode with the highest group
velocity.

To illustrate the propagation of impulses, we plot �n(τ ) as
a function of n for several values of τ in Fig. 2. For each τ ,
a vertical line at n = τπ (ωfast − 1) coincides with the leading
edge of the pulse in �n(τ ), indicating that the pulse propagates
at the fastest group velocity of the phonon band.

IV. DISSIPATION

To discuss some general behaviors of this model, we
compute the motion for a system with ωfast = 10, interac-
tion � with Gaussian shape of amplitude �0 = ±20 and
width λ = 4, and lattice spacing α = 40. We have shown
before [44] that �fast/�slow = 10 provides a sufficiently wide
band while keeping the computational time reasonable; see
Appendix for more details about the parameter choice and the
computational procedure. We introduce a mobile particle with
mass μ = 1 and initial velocity σ̇0 = 120 midway between
two chain masses. As shown in Fig. 3, the mobile particle’s
kinetic energy decreases, slowing until it eventually becomes
trapped in a local energy well. At this scale, it is hard to see,
but the mobile particle’s velocity undergoes fluctuations as it
passes each chain mass.

We also show the displacement δρ j of the chain masses
near the mobile particle using a heat map. The amplitude
of these displacements is very small compared to the chain
mass spacing (δρ j � α) and grows as the mobile particle
slows down. Outside a sound cone, the chain masses show
no displacement. This cone is well predicted by the greatest
group velocity in the phonon band, as discussed above. After
the mobile particle becomes trapped, the system undergoes
persistent oscillation at frequencies just outside the phonon
band, as discussed in Ref. [44].

A. Velocity fluctuation

To explore the velocity variation in detail, we consider
the case of a particle passing a single chain mass, where the
particle is initialized halfway between two chain masses with

FIG. 3. General example of dissipation. Motion of a single
mobile particle with repulsive (a) and attractive (b) Gaussian chain-
particle interaction. Both cases have chain spacing α = 40, Gaussian
width λ = 4, and amplitude �0 = ±20, μ = 1, and initial mobile
particle speed σ̇0 = 120 at a point halfway between chain masses.
Both mobile particle trajectories σ (τ ), shown in black lines, exhibit
gradual slowing and eventual trapping in local energy minima. The
displacement of 250 individual chain masses δρ j is shown with a heat
map. At late times, |δρ j | reaches values as large as 0.8, so the colors
are saturated. The dashed lines with slope πα(ωfast − 1) represent
the edge of the sound cone, outside of which the chain masses are
motionless.

speed σ̇0 = 50. Figures 4(a) and 4(b) show the particle tra-
jectory and velocity for a single chain pass, respectively. The
black horizontal dotted line in (a) indicates the rest position
of the subsequent chain mass in the particle trajectory. The
vertical dotted lines indicate the time at which the particle
passes the chain rest mass position, with the colors corre-
sponding to the sign of the potential. We see that the particle
in the repulsive system reaches σ = 240 at a later time than
the particle in the attractive system, indicating a difference in
velocity between the two cases.

Plotting the particle velocity [Fig. 4(b)] reveals the effect
of the interaction potential on the particle and shows that
the particle velocity is not constant throughout a single pass.
The interaction potential profile � determines the velocity
profile experienced by the particle. In the repulsive (attractive)
case, the particle slows down (speeds up) in the vicinity of the
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FIG. 4. Velocity fluctuation close to chain mass. (a) Particle position σ and (b) velocity σ̇ for a single chain pass. The system has ωfast = 10
and a Gaussian interaction profile with �0 = ±20 and λ = 4. The mobile particle is initialized with speed σ̇ = 50 halfway between two chain
masses at σ = 220. The horizontal dotted line in (a) indicates the rest position of the subsequent chain mass, while the vertical dotted lines
in both (a) and (b) indicate the time at which the particle passes the chain mass rest position. The black solid lines give the analytic velocity
fluctuation for both signs of �0, offset to match the time the particle passes the chain mass rest position. (c) Maximum velocity fluctuations as
a function of velocity for �0 = ±20. (d) Particle velocity evolution for the trajectories plotted in Fig. 3. The capture speed is given by the pink
horizontal line.

chain mass. The vertical dotted lines in Fig. 4(b) are the same
as in Fig. 4(a) and correspond to the time at which the particle
passes the chain mass rest position. The fact that the extrema
in the velocity profiles correspond well to these times further
validates the claim that the chain mass deviation is small.

We can obtain an approximate analytic form of the ve-
locity fluctuation for the case of a Gaussian potential profile
�(x) = �0 exp(− x2

2λ2 ) using a straightforward energy conser-
vation argument. In the case of a conservative process with
no energy loss and fixed chain masses, the velocity profile, to
leading order, is given by

σ̇ (τ ) =
√

σ̇ 2
0 − 8π2�0

μ
exp

(
− σ̇ 2

0 τ 2

2λ2

)
, (16)

where τ ∈ [− α
2σ̇0

, α
2σ̇0

]. We plot this in Fig. 4(b) and see that
the analytic expression agrees well with the velocity profile
of a particle passing a single chain mass. At the extremum
of the interaction profile, the velocity is given by σ̇ext =√

σ̇ 2
0 − 8π2�0/μ. Figure 4(c) plots the maximum velocity

fluctuations σ̇0 − σ̇ext for both signs of �0. The magnitude of
the fluctuations increases with lower speed and, in the case
of the repulsive potential, there is a minimum speed σ̇min =√

8π2�0/μ which is required for the particle to overcome the
potential barrier. Put another way, the particle in the repul-
sive case is trapped when its kinetic energy midway between
lattice sites falls below �0. In the attractive case, the particle
is captured when its kinetic energy near the chain mass falls
below �0.

The increase in the magnitude of fluctuation is also re-
flected in Fig. 4(d), which plots the particle velocity over time
for the trajectories in Fig. 3. We see the velocity fluctuations as
spikes pointing down (up) for the repulsive (attractive) case.
The fluctuation magnitudes become larger as the speed de-
creases. In both cases, the particle eventually becomes trapped
by chain masses, as shown by the negative velocities. It is
useful to neglect the interaction-induced fluctuation and con-
sider only the particle velocity midway between chain masses,
which is given by local maxima (minima) for the repulsive
(attractive) case. While the value of the extremum velocity
is well-approximated using this method across all velocities,
the agreement between analytics and numerics for the full
profile becomes worse at lower speeds, where the fluctua-
tion magnitude becomes a significant fraction of the initial
velocity.

B. Dissipation scaling

Numerical integration of the equations of motion
Eqs. (12)–(14) demonstrates dissipation, as expected. To
quantify this dissipative energy loss, we will take advantage
of the chain masses’ small deflection during their interaction
with the particle. Neglecting this deflection turns Eq. (14) into
a dissipationless equation of motion:

σ̈ (τ ) = −(2π )2 1

μ

d

dσ
�[ρ0, σ (τ )]. (17)

Next, let τ = −τ∗ be the time when the mobile particle is
introduced to the system midway between two chain masses
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and τ = τ∗ be the time when it reaches another, not neces-
sarily the next, midpoint. Assuming that the interaction of the
mobile particle with individual chain masses is symmetric, the
lack of dissipation in Eq. (17) means that σ̇ (τ ) = σ̇ (−τ ) for
−τ∗ � τ � τ∗. Rewriting Eq. (7) without the homogeneous
part in terms of the dimensionless variables and dropping the
displacement of the chain masses yields

ζ j (τ∗) = − 2π

√
h̄

�slow

×
∫ τ∗

−τ∗
dτ

sin[2πω j (τ∗ − τ )]

ω j
ε†

j∇ρ0
�[ρ0, σ (τ )]

= − 2π cos(2πω jτ∗)

√
h̄

�slow

×
∫ τ∗

−τ∗
dτ

e−2π iω jτ

iω j
ε†

j∇ρ0
�[ρ0, σ (τ )], (18)

where we used the fact that ε†
j∇ρ0

�[ρ0, σ (τ )] is odd in τ , as a
consequence of Eq. (17). Setting �(ρ0, σ ) =∑n �(σ − αn)
as a sum of individual pairwise interactions and defining the
Fourier transform �p = ∫ dx eipx�(x), where p = 2π l/(Nα)
for l ∈ Z, gives

�(ρ0, σ ) = 1

Nα

∑
n,q,Q

e−i(q+Q)(σ−αn)�q+Q, (19)

where q = 2πk/(Nα) for 1 � k � N and Q = 2π l/α for l ∈
Z. With this,

ε†
j∇ρ0

�(ρ0, σ )

= 1

Nα

1√
N

∑
n

∑
q,Q

i(q + Q)

× e− 2π i jn
N e−i(q+Q)(σ−αn)�q+Q

= 1

α
√

N

∑
Q

i

(
2π j

Nα
+ Q

)
e−i
(

2π j
Nα

+Q
)
σ
� 2π j

Nα
+Q, (20)

where we perform the summation over n before the one over
q, turning Eq. (18) into

ζ j (τ∗) = − 2π cos(2πω jτ∗)

α
√

N

√
h̄

�slow

∫ τ∗

−τ∗
dτ

e−2π iω jτ

ω j

×
∑

Q

(
2π j

Nα
+ Q

)
e−i
(

2π j
Nα

+Q
)
σ
� 2π j

Nα
+Q. (21)

Next, we assume that the kinetic energy of the mobile par-
ticle is substantially larger than the variation of the potential
profile produced by the chain. This is a reasonable assumption
because, once the two energy scales become comparable, the
mobile particle is expected to get trapped in a potential min-
imum very shortly. Since we are interested in the dissipation
during the particle’s motion along the chain, we will focus on
the portion of the trajectory sufficiently far from the trapping.
This simplification allows us to view the particle’s speed as
approximately constant, writing σ (τ ) → σ̇ τ . Integrating over
τ in Eq. (21) yields

ζ j (τ∗) = − 2π

α
√

N

√
h̄

�slow

cos(2πω jτ∗)

ω j

∑
l

(
2π j

Nα
+ 2π l

α

)

× � 2π j
Nα

+ 2π l
α

2 sin
{
τ∗
[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

.

(22)

Equation (22) gives the amplitude Aj of the jth mode, which is
related to the mode’s energy via Ej = �2

slowω2
j A

2
j/2. In terms

of Eslow, this energy becomes

E j = 1

2N

[
2π

α

∑
l

(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

× 2 sin
{
τ∗
[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

]2

. (23)

Summing Eq. (23) over j gives the amount of energy trans-
ferred from the mobile particle to the chain during the
interval 2τ∗.

V. SINGLE-PASS DISSIPATION

To explore the dissipation’s dependence on system param-
eters, we now develop an analytical model of energy loss
when the mobile particle passes a single chain mass. Setting
τ∗ = α/2σ̇ in Eq. (23) gives the energy dissipated by the
moving particle after passing a single chain mass:

E j = 1

2N

[
2π

α

∑
l

(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

2 sin
{

α
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

]2

α→∞= 1

2N

[ ∫ ∞

−∞

dx

σ̇

(
2π j

Nα
+ x

)
� 2π j

Nα
+x

2 sin
[

α
2

(
2πω j

σ̇
+ 2π j

Nα
+ x
)]

2πω j

σ̇
+ 2π j

Nα
+ x

]2

α→∞= 1

2N

[
2π

σ̇

(
2πω j

σ̇

)
� 2πω j

σ̇

]2

. (24)
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The α → ∞ limit is applicable if the separation between the
chain masses α is substantially larger than the characteristic
width of the interaction term �(x) so the particle interacts
with only one chain mass at a time. For an arbitrary interaction
� which approaches zero at large separations, assuming the
chain displacements vanish (justified by the small δρ seen in
Fig. 3), and taking the limit α → ∞, we obtain a single-pass
dissipation:

� =
∑

j

1

2N

[
4π2ω j

σ̇ 2

∫
du exp

(
i
2πω j

σ̇
u

)
�(u)

]2

. (25)

In the high-velocity limit, σ̇ → ∞, the Fourier transform
inside the square brackets approaches

∫
dx �(x) as the ex-

ponential function tends to 1. If the integral is convergent,
we find � ∝ σ̇−4. Given that the frequency of encounters
between the mobile particle and the chain masses is pro-
portional to σ̇ , we multiply the energy loss per pass by the
speed to obtain the energy dissipation rate: �σ̇ ∼ σ̇−3. In
between interactions with the chain masses, the mobile parti-
cle’s total energy E is proportional to σ̇ 2, so the energy loss
rate Ė ∼ −E−3/2 produces a quasi-power-law decay of the
energy. If the integral in Eq. (25) is not convergent (such as
in the case of Coulomb interaction), the divergence will be
mitigated by the faster-decaying σ̇−4 prefactor, also leading to
quasi-power-law energy decay. Crucially, unlike typical drag,
where faster motion produces more resistance by the medium,
higher speed here actually results in reduced dissipation.

Physically, the decrease in dissipation with increasing
speed can be understood by considering the displacement of
the chain mass due to its interaction with the incident par-
ticle. Let the average force that the chain mass experiences
during the interaction be f̄ and the effective interaction time
be τint. The displacement of the chain mass arising from the
interaction then becomes ∼ f̄ τ 2

int. The potential energy stored
in the compressed springs due to the mass’s displacement is
proportional to the displacement squared and, hence, to τ 4

int.
The effective interaction time τint ∼ λ/σ̇ , so the elastic energy
originating from the particle’s kinetic energy is proportional to
σ̇−4, which is the scaling of � at large speeds.

For small σ̇ , the behavior is strongly dependent on the
potential profile. For a nondiverging potential, the Fourier
term in Eq. (25) vanishes because small σ̇ corresponds to a
high Fourier momentum. Consequently, for σ̇ � ω j�, where
� is the characteristic width of the potential, the chain mode
does not absorb energy from the moving particle. If σ̇ � ω j�

for all the modes in the chain (which is possible for a gapped
spectrum considered here), the particle experiences essentially
no dissipation. For singular potentials, the Fourier term di-
verges as a logarithm or a power of 2πω j/σ̇ , resulting in a
(quasi-)power-law dependence of � on 1/σ̇ , also leading to a
power-law-like decay of energy with time. More importantly,
diverging potentials are not allowed in the 1D case because the
mobile particle cannot circumvent them, making any discus-
sion of it passing a chain mass inapplicable. Conceptually, if
the particle is moving slowly compared to a mode frequency,
the mode manages to return some of its energy to the mobile
particle. Hence, the nonmonotonicity of � for a system with
hard phonon modes can be seen as a competition between the
reduced interaction time at high speeds and the reduced num-

ber of modes participating in the dissipation at low speeds. We
emphasize that, despite the exponential suppression of dissi-
pation at low speeds, the motion is never fully dissipationless.
Such suppressed dissipation might be of interest to researchers
working on polarons in solid-state systems [45].

As a concrete example, we consider a Gaussian interaction,
as in Fig. 3, for which the sum in Eq. (25) can be computed
analytically, yielding

� = 4π3 �2
0

σ̇ 2

(
2πλ

σ̇

)2

e−( 2πλ
σ̇ )2(ω2

fast+1)/2

×
{

I0(W ) + ω2
fast − 1

2
[I0(W ) − I1(W )]

}
, (26)

where W ≡ ( 2πλ
σ̇

)2(ω2
fast − 1)/2, and In are modified Bessel

functions of the first kind. In the fast mobile particle limit,
σ̇ � 2πλωfast,

�fast = 2π3 �2
0

σ̇ 2

(
2πλ

σ̇

)2(
ω2

fast + 1
)
, (27)

recovering the expected power law. Conversely, for small
values of σ̇ , the single-pass dissipation is exponentially sup-
pressed:

�slow = 4π3 �2
0

σ̇ 2

(
2πλ

σ̇

)
e−( 2πλ

σ̇ )2 1√
π
(
ω2

fast − 1
) . (28)

The analytic form of single-pass dissipation can be seen
in Fig. 5, plotted for various interaction potentials in both
low- and high-velocity limits. To numerically validate the
approximations made deriving Eq. (25), we initialize the mo-
bile particle with various velocities σ̇0 halfway between two
masses of a chain that is initially at rest. We evolve the
system for a time τ = 1.25 × α/σ̇0 using the equations of
motion (12)–(14). This time is long enough for the mobile
particle to pass a single chain mass and reach the next mid-
point, at which we calculate the kinetic energy T = MṘ2/2 =
h̄�slow(2π )−2μσ̇ 2/2 and subtract it from the initial kinetic
energy. We used different simulation parameters for the low-
and high-σ̇ regimes to avoid some technical issues. For slow
speeds, �0 must be smaller than the kinetic energy associated
with the minimum value of σ̇ to prevent the particle from
getting stuck in the case of a repulsive interaction. Using the
same �0 for fast speeds is problematic, however, as �fast ∝
�2

0 becomes an exceedingly small fraction of the initial ki-
netic energy, leading to numerical issues when subtracting
T (τ ) − T (0). Hence, we calculated the low- and high-σ̇0 be-
havior using different values of |�0|.

The resulting energy losses � agree well with the analyti-
cal predictions, as shown in Fig. 5. For each set of parameters,
the attractive (�0 < 0) and repulsive (�0 > 0) cases shift to-
ward lower and higher σ̇0, respectively. The reason behind this
shift has to do with the fact that the analytic formula �(σ̇0)
assumes a constant particle speed, which is not strictly true as
the particle accelerates near the chain mass for �0 < 0 and
decelerates for �0 > 0, as discussed in Sec. IV A. As a first
approximation, we can consider the average effective velocity
for each case, which is lower (higher) than σ̇0 for the repulsive
(attractive) case. This explains both the directions of these
deviations and the fact that magnitude of these deviations
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FIG. 5. Single-pass dissipation. Energy loss � for low velocity
(a) with |�0| = 1/100, and high velocity (b) with |�0| = 24. The
solid lines are analytical calculations using Eq. (26) for different val-
ues of λ. The “+” and “−” symbols show the numerical values of �

obtained from single-pass trajectories, where the symbols correspond
to repulsive (�0 > 0) and attractive (�0 < 0) potentials respectively.

increases as σ̇0 decreases. The difference between the two
interaction signs is more pronounced when �0 is comparable
to the kinetic energy of the particle, as shown in Fig. 6.

Eliminating the α → ∞ approximation means that the
argument inside the brackets of the sine function and the
denominator in Eq. (23) cannot be made to vanish for any σ̇

for a particular j. Instead, this expression goes to zero only
for speeds which satisfy σ̇ = αω j/( j

N + l ). For these speeds,
E j ∝ τ 2

∗ , leading to an enhanced excitation of the jth mode.
If the density of states is high around the jth mode, this en-
hanced excitation will lead to an increased dissipation by the
mobile particle. Because the density of states is highest at the
band edges due to the van Hove singularities, we expect this
enhancement to be most consequential for ωslow and ωfast. For
ωslow, j = 1 and the speeds become σ̇ = αωslow/l = α/l with
l > 0, since l = 0 is excluded due to the vanishing prefactor.
For ωfast, j = N/2 and the speeds become σ̇ = 2αωfast/(2l +
1) with l � 0.

To visualize the effect of this increased dissipation, we
plot the energy losses � (during the full particle trajecto-
ries of Fig. 3) in Fig. 7. We also plot vertical lines at σ̇ =
2αωfast/(2l + 1) to indicate the speeds at which we expect
to see an enhanced dissipation due to the states at the top of

FIG. 6. Dissipation after passing single chain mass. Energy
losses � for a range of initial particle velocities. The green solid line
is the analytic curve calculated using Eq. (26) and the circle symbols
show numerical � values obtained from single-pass trajectories for
both repulsive and attractive cases. The mobile particle is initialized
halfway between chain masses and the parameters used are α = 40,
�0 = ±2, λ = 4, ωfast = 10, and μ = 1. The vertical line indicates
the minimum velocity required to overcome the potential barrier for
the repulsive case, as discussed in Sec. IV A.

the mode band. We observe peaks in � close to the vertical
lines, followed by an oscillatory behavior as σ̇0 is reduced.
The enhancement is strongest for the largest velocity with the
higher-l peaks being much weaker. In addition, we observe
a shift toward higher (lower) velocities for attractive (repul-
sive) potentials due to the velocity fluctuation discussed in
Sec. IV A.

VI. STEADY-STATE DISSIPATION

To study the long-time dynamics of the system, we con-
sider dissipation in the steady-state limit when the mobile
particle passes all N chain masses, and N → ∞. We first take

FIG. 7. Dissipation along full trajectory. Energy losses � cal-
culated from the trajectories plotted in Fig. 3 (circles) and from
Eq. (26) (black curve). We plot speeds at which dissipation is pre-
dicted to be enhanced at σ̇ = 2αωfast/(2l + 1) (blue vertical lines).
Inset: Zoomed-in plot at high speeds to highlight oscillatory behavior
of �.
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τ∗ = Nα/2σ̇ and Eq. (23) becomes

E j = 1

2N

[
2π

α

∑
l

(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

× 2 sin
{

Nα
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

]2

, (29)

corresponding to energy absorbed by the jth chain mode after
a mobile particle traverses the entire system at speed σ̇ . Natu-
rally, for N → ∞, summing Eq. (29) over j results in a diverg-
ing quantity. However, dividing the sum by N gives the energy
absorbed by the chain for each chain mass passed by the
particle:

�̄ = lim
N→∞

1

N

∑
j

1

2N

[
2π

α

∑
l

(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

2 sin
{

Nα
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

]2

= lim
N→∞

1

2N2

(
2π

α

)2∑
jll ′

(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

2 sin
{

Nα
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

×
(

2π j

Nα
+ 2π l ′

α

)
� 2π j

Nα
+ 2π l′

α

2 sin
{

Nα
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l ′

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l ′
α

)
σ̇

. (30)

In the limit N → ∞, the two fractions with sine in the numerator become nascent Dirac delta functions. Consequently, l = l ′
for the expression not to vanish,

�̄ = lim
N→∞

1

2N2

(
2π

α

)2∑
jl

[(
2π j

Nα
+ 2π l

α

)
� 2π j

Nα
+ 2π l

α

2 sin
{

Nα
2σ̇

[
2πω j + ( 2π j

Nα
+ 2π l

α

)
σ̇
]}

2πω j + ( 2π j
Nα

+ 2π l
α

)
σ̇

]2

= lim
N→∞

1

2N2

(
2π

α

)2 ∞∑
k=−∞

[
2πk

Nα
� 2πk

Nα

2 sin
[

Nα
2σ̇

(
2πωk + 2πk

Nα
σ̇
)]

2πωk + 2πk
Nα

σ̇

]2

=
∫ ∞

−∞
dx

(
2π

α

)2(2π

α
x� 2π

α
x

)2

lim
N→∞

2

N

[
sin
[

Nα
2σ̇

(
2πω(x) + 2π

α
σ̇x
)]

2πω(x) + 2π
α

σ̇x

]2

, (31)

where ω(x) =
√

1 + (ω2
fast − 1) sin2(πx). Taking the limit

turns the expression inside the brackets into a Dirac delta
function:

�̄ = 2

N

∫ ∞

−∞
dx

(
4π2

α2
x� 2π

α
x

)2

π
Nα

2σ̇
δ

[
2πω(x) + 2π

α
xσ̇

]

=
∫ ∞

−∞
dx

(
4π2

α2
x� 2π

α
x

)2
α

2σ̇
δ

[
ω(x) + xσ̇

α

]
. (32)

If x j are the solutions to ω(x) + xσ̇
α

= 0, we have

�̄ =
∑

j

(
4π2

α2
x j� 2π

α
x j

)2
α

2σ̇

1∣∣ω′(x j ) + σ̇
α

∣∣
= 1

2

∑
j

[
4π2ω(x j )

σ̇ 2
� 2πω(x j )

σ̇

]2
1

|αω′(x j )/σ̇ + 1| . (33)

Equation (33) tells us that, in a long-time limit, only certain
chain modes absorb energy from the mobile particle, while the
net energy exchange with all other modes vanishes. Moreover,
if −xσ̇ /α has a slope similar to the phonon band at xs, the
denominator in Eq. (33) becomes small and �̄ acquires a
peak. Because xs does not have to lie in the first Brillouin
zone, �̄ can have multiple peaks originating from different
Brillouin zones, similar to an Umklapp process. The slope
matching occurs when −xsσ̇ /α ≈ 1 = ωslow, near the bottom

band edge, so the corresponding speeds are given by σ̇ ≈ α/n
for all positive integers n. We confirm the existence of these
peaks by plotting Eq. (33) in Fig. 8(c).

To emulate conduction in macroscopic devices, we ad-
ditionally introduce a bias term in the form of a constant
gradient in the potential experienced by the mobile particle.
This bias has the effect of increasing the mobile particle’s
kinetic energy by a fixed amount β after each pass, which
can counteract the energy �̄ dissipated to the chain. When
�̄(σ̇ ) − β = 0, a mobile particle will have velocity σ̇ both
before and after passing each chain mass. This behavior will
lead to a constant average velocity, akin to a drift velocity in
conducting materials.

For a mobile particle moving with �̄ just above one
of the spikes, a positive value of �̄(σ̇ ) − β will cause
the particle’s velocity to decrease below the spike, and
for velocity just below a spike, interaction with the chain
and the bias will cause the particle’s velocity to increase.
These behaviors lead to stable points in the vicinity of
σ̇ = α/n. Corresponding to each spike is another, higher
velocity that satisfies �̄(σ̇ ) − β = 0. For velocities slightly
higher (lower) than these solutions, the particle �̄(σ̇ ) − β

is negative (positive), so the particle’s velocity will increase
(decrease), leading to an unstable repulsive point. The ex-
istence of multiple stable points due to the multiple spikes
indicates that, for a given bias, there are multiple drift
velocities.
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FIG. 8. Multiple drift velocities maintained by constant bias. The evolution of particle speeds for a range of initial speeds for system
parameters α = 40, �0 = ±2, λ = 4, and bias β = 0.01 for repulsive interactions (a) and attractive interactions (b). For clarity, we plot local
maxima (minima) for repulsive (attractive) interactions and neglect the interaction-induced velocity fluctuation (see Sec. IV A for details).
The horizontal orange lines show velocities α/n, where n is a positive integer, corresponding to spikes in �̄. For the repulsive case, the
minimum speed required to overcome the potential barrier (the capture speed) is given by 8π2�0/μ ≈ 12.6. Small bias leads to a very modest
acceleration at high speeds, so we use a different scale to demonstrate a positive slope of the curve. (c) shows the mean dissipation per pass �̄

in the steady-state limit.

To confirm the unusual presence of these drift velocities,
we perform numerical simulations of particle trajectories for
a range of initial speeds, for both repulsive and attractive
interactions in the presence of a bias. Figures 8(a) and 8(b)
plot the evolution of particle speeds with time and the spike
locations, σ̇ = α/n, are marked by horizontal lines. We can
see that the computed trajectories fall into three categories.
For high enough σ̇0, the dissipation is always smaller than
the bias, and the particle accelerates away. For intermediate
velocities, the particle can accelerate or decelerate depending
on the initial speed to a drift velocity near α/n. For the
repulsive case, particles with σ̇0 below the capture velocity
are trapped by the chain, having insufficient kinetic energy to
go over the potential energy maximum. As predicted by our
analytics, we see that multiple drift velocities are supported in
both the repulsive and attractive cases.

As discussed in Secs. IV A and V, the particle does not
move at a constant velocity throughout its trajectory, lead-
ing to moderate deviations from these predictions. Near each
chain mass, an attractive (repulsive) potential leads to an
increase (decrease) in the particle velocity, so the velocity
takes a range of values (see Fig. 6). This velocity fluctuation
has the effect of broadening the spikes of Fig. 8(c), making
�̄ finite at the orange lines σ̇ = α/n instead of diverging; see
Fig. 9. This broadening will shift both the stable drift veloc-
ities and unstable solutions toward lower (higher) velocities
for the attractive (repulsive) case. In addition to shifting the
spikes’ locations, velocity fluctuations cause them to over-

lap, so �̄(σ̇ ) − β = 0 is not satisfied for low σ̇ . To compute
this broadened �̄, we average over σ̇ ∈ [σ̇0, σ̇ext]. Instead of

FIG. 9. Broadened mean dissipation per pass. Broadened �̄ for
the parameters of Fig. 8 calculated using Eq. (33) and weighted
over velocity fluctuations. The vertical orange lines show σ̇ = α/n
for positive integers 1 � n � 10, indicating velocities at which we
expect an enhanced dissipation. The pink vertical line shows the
predicted minimum velocity for the repulsive case. The horizontal
green line indicates the bias value used in the trajectories plotted
in Figs. 8(a) and 8(b). At low velocities, this broadening effectively
removes the spikes in �̄, which predicts a smaller number of drift
velocities than shown in our numerical simulations.

013053-10



MINIMAL MODEL OF DRAG IN ONE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 5, 013053 (2023)

assuming equal weights over the velocity range, we compute
the probability distribution of speeds of the mobile particle as
it moves from one point midway between two chain masses to
the next. After this, we use the weights of this distribution to
perform an averaging of �̄ in the range [σ̇0, σ̇ext]. Considering
the velocity fluctuation also makes �̄ dependent on the sign
of the interaction potential and reveals the same shifts to the
right (left) for the repulsive (attractive) case as seen in Sec. V.
For repulsive potentials, another drift velocity exists at low σ̇

where the mobile particle almost comes to rest during each
pass. These solutions have velocity just above the capture
velocity of the chain. Additionally, at lower speeds, when
the fluctuation magnitude becomes comparable to the drift
velocity, the deviation from α/n is more pronounced. As we
can see from Figs. 8(a) and 8(b), this broadening predicts
fewer drift velocities than observed in the numerics. This is
likely due to the oversimplification of assuming a constant
speed in the derivation of �̄. For this reason, Fig. 9 serves
as a qualitative illustration of how velocity variation modifies
the dissipation in steady state and should not be taken as a
quantitative prediction.

Experimentally, an observed drift velocity in a 1D ionic
conductor would serve as a probe of effective chain param-
eters. Since the highest σ̇drift ≈ α = a/

√
h̄/

√
κm, where the

chain spacing a can be directly measured, σ̇drift indirectly
measures the product of the chain mass and its confinement.
A realistic system, however, will experience thermal motion
of the chain masses, which will further blur the spikes in �̄.
We will explore the role of these thermal fluctuations in future
work.

In the absence of thermal fluctuations, our model qual-
itatively relies on only two energy scales: the strength of
the interaction between the particle and the framework �0

and the maximum energy of the phonon band ωfast. In solid
electrolytes, numerical calculations of the lithium migra-
tion barrier indicate �0 ∼ 100 meV [11,18]. In LISICON
electrolytes, the potential energy profile is similar to the
Lennard-Jones form, with �0 ∼ −5 ± 1 eV, depending on the
tetrahedral (XO4)m− group (where X is Al, Si, Ge, or P)
[19]. For carbon nanotubes, on the other hand, the minimum
of the interaction energy between a copper atom inside the
nanotube and one of the carbons gives �0 ∼ −0.14 eV. [32]
Because the maximum phonon energy in a crystal is typically
10 to 30 THz [46], corresponding to O(0.1 eV), the magni-
tude of the interaction is generally larger than the energy of
the highest-energy phonon. In other words, �0 is generally
greater than ωfast, but the precise ratio can vary widely.

VII. SUMMARY

We considered the 1D motion of a single mobile parti-
cle that interacts with each mass in an infinite chain via a
nonlinear coupling. We showed, using numerical simulations
and a simplified single-pass model, that this interaction will
dissipate the mobile particle’s energy until it is trapped by the
chain. Unlike typical drag, this dissipation rate is reduced at
higher speeds. We also introduced a bias term, and using a
steady-state model and numerical simulations, found that the
resulting dynamics show a variety of behaviors. The mobile
particle can exhibit runaway acceleration and can be trapped

by the chain masses, but it can also settle into one of multiple
stable drift velocities determined by chain parameters. Signa-
tures of these dynamics should be measurable in conduction
channels where the motion is effectively 1D, such as electrons,
simple molecules, and fullerenes in carbon nanotubes, or ions
in anisotropic crystals.
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APPENDIX: COMPUTATIONAL PROCEDURE

In the most general sense, Eqs. (12) and (14) are solved
numerically by first rewriting them as discrete difference
equations for time step δ:

ρβ =
∑

j

ε j

√
n j + 1

2

√
2

ω j
cos(2πω jδβ + φ j )

− 2πδ
∑

γ

�
↔

[δ(β − γ )]∇ρ�(ργ , σγ ), (A1)

σ j,β = − (2πδ)2

μ

∑
k

d�(ρk,β−1, σ j,β−1)

dσ j
+ 2σ j,β−1 − σ j,β−2,

(A2)

where β and γ are time step labels. The solution is obtained it-
eratively, after initializing σ0, j and σ1, j = σ0, j + δσ̇0, j , where
σ̇0, j is the initial velocity of the mobile particle. Despite the
fairly standard computing protocol, calculating the trajectories
efficiently and reliably requires some care.

First, we clearly cannot solve the problem for an infinitely
large system, so ρ has to be a finite vector. Therefore, we pick
a segment of the chain with Nch masses whose positions will
be tracked. As long as the mobile particles remain within this
segment, all the interactions between them and the infinitely
long chain will be accounted for. The trajectories of the chain
masses are saved to a Nch × Nstep matrix ρ

↔, where Nstep is the
number of time steps in the simulation. Similarly, the trajec-
tories of the mobile particles are saved in a Nparticle × Nstep

matrix σ
↔, where Nparticle is the number of particles in the

system. Prior to the simulation, ρ
↔ is filled with the mass

trajectories originating from the thermal motion of the chain,
which are all zeros in this case. During the simulation, it is
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updated in accordance with the second term of Eq. (A1) in a
manner discussed below.

To guarantee the smoothness of the chain response, δ has
to be much smaller than the shortest timescale intrinsic to the
chain, corresponding to the fastest chain mode �fast. Hence,
we choose δ to be much smaller than this mode’s period τfast =
(2π/�fast )/(2π/�M ) = 1/ωfast . In our earlier work [44], we
found that δ = 1/60ωfast is sufficiently small and we employ
this value of δ here, unless otherwise specified. The second
point to consider when choosing δ involves the particle-chain
interaction. To avoid numerical artifacts, the time step has
to be substantially smaller than the particle-chain interaction
time. In other words, δσ̇ � �, where � is the characteristic
interaction length. Therefore, we will take care to ensure that
for a fixed δ, the interaction term remains sufficiently wide
and the particle speed is kept sufficiently low.

With δ expressed in terms of the fastest chain mode, we
need to decide on the magnitude of ωfast. We see that a sin-
gle period of the slowest mode τ = 1 contains 1/δ = 60ωfast

time steps and, consequently, a simulation of length τsim has
60ωfastτsim time steps. Because we want our simulations to be
much longer than the period of the slowest chain mode, we
expect the number of time steps to be at least O(6000ωfast ).
While the computational complexity of Eq. (A2) scales lin-
early with the number of time steps, Eq. (A1) has a quadratic
scaling because every time step involves a summation over
all previous time steps. Therefore, larger ωfast leads to a
much higher computational load. We have shown before [44]
that �fast/�slow = 10 provides a sufficiently wide band while
keeping the computational time reasonable. Hence, we set
ωfast = 10 for this study.

As was mentioned above, Eq. (A1) is the computational
bottleneck. Although one cannot circumvent the quadratic
scaling with time steps, we reduce some of the load by pre-
computing the memory kernel, which is a parallelizable task,
unlike the iterative solution of ρ and σ. The precomputed
kernel can also be reused as long as the chain parameters re-
main unchanged. For this precomputation, we define the time
period for the simulation τ ∈ [0, τsim] and partition this period
into steps of size δ. Next, we fix the number of chain masses
to be tracked during the simulation Nch and calculate a matrix
with elements �n(lδ) for 0 � n � Nch − 1, 1 � l � τsim/δ us-
ing the Gaussian quadrature method. Using double precision
numbers, the total size of the matrix in the memory becomes
Nchτsim/δ × 8 bytes, which, for our choice of δ and ωfast with
Nch = τsim = 1000, translates to ≈4.8 Gb. The precomputed
kernel can now be used in various simulations as long as the
simulation time and the number of chain masses do not exceed
the precomputed values.

At each time step of the simulation, we calculate a matrix
of pairwise forces d�(ρi, σ j )/dρ. Summing the matrix along

the rows gives total forces for each of the chain masses,
while the negative sum along the columns results in the forces
experienced by the mobile particles. Using the latter, the next
column of the particle trajectory matrix σ

↔ is updated, follow-
ing Eq. (A2).

To update the values of the chain trajectory matrix ρ
↔

using the most recently computed forces, it is possible to
proceed in two ways. One involves first turning the pre-
computed kernel matrix into an array of Toeplitz matrices

[�
↔

(δ), �
↔

(2δ), . . . , �
↔

(τsim )]. In the course of the simulation,
we save all the forces acting on the chain segment at each
time step. From this, we can compute the memory term by
multiplying the past force vectors by the appropriate entries
of the precomputed Toeplitz-�

↔
array and performing a sum-

mation. More specifically, �
↔

(0) is multiplied by the current
force vector, �

↔
(δ) by the force from the previous step, �

↔
(2δ)

by the force from two steps ago, and so on. In other words,
�
↔

’s with larger time arguments get multiplied by older forces.
Although faithful to Eq. (A1), this approach is fairly slow
because of the number of operations involved. A much more
efficient approach involves propagating the effects of the in-
teraction into the future instead of summing the past forces.

For this approach, we do not construct the Toeplitz ma-
trices used in Eq. (A1) but instead arrange the precomputed
values at the beginning of the simulation in the following
manner:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�Nch−1(δ) �Nch−1(2δ) . . . �Nch−1(τsim )
...

...
. . .

...

�1(δ) �1(2δ) . . . �1(τsim )

�0(δ) �0(2δ) . . . �0(τsim )

�1(δ) �1(2δ) . . . �1(τsim )
...

...
. . .

...

�Nch−1(δ) �Nch−1(2δ) . . . �Nch−1(τsim )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

At every time step, after computing the forces experienced by
every chain mass, we keep only the forces that are greater than
a certain small value in magnitude (10−20 in our calculations)
along with the corresponding chain mass indices. Next, for
each mass in this set, we take a slice of Nch rows from the
matrix in Eq. (A3) so �0 is on the row corresponding to
the mass’s index. We also keep only as many columns from
this slice as there are remaining time steps in the simulation,
dropping from the end. We multiply the matrix slice by −2πδ

and the force, and add it to the future portion of ρ
↔. Adding

the forcing this way is not only faster as it avoids matrix
multiplication but it also makes saving the forces unnecessary,
reducing the memory load.
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