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S1. SPIN MODELS

A. Effective Hamiltonian: Heisenberg model

In the experiment, N identical fermionic 40K atoms with mass m are trapped in a three dimensional spin-dependent
nearly harmonic potential. The spin degree of freedom is encoded in the mF = −9/2(↓) and mF = −7/2(↑) states of
the F = 9/2 hyperfine manifold. The single-particle Hamiltonian of the system can be written as

Ĥsp =
∑
σ=↑,↓

∫
d3r ψ̂†σ(r)

(
− ~2

2m

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ Vσ(r)

)
ψ̂σ(r) (S1)

where ψ̂†σ(r) is the fermionic field operator that creates a spin σ atom at point r. For convenience we expand

ψ̂†σ(r) in terms of fermionic operators ĉ†niσ that create a spin σ atom in the single particle eigenstate φσni(r) with
ni = {nxi , n

y
i , n

z
i }. In this eigenmode basis the field operator takes the form

ψ̂†σ(r) =
∑
ni

ĉ†niσφ
σ
ni(r) (S2)

The external potential can be written in the form of Vσ(r) = V0(r) + ∆Vσ(r), where V0(r) is the spin independent
part of the potential with trapping frequencies ω = {ωx, ωy, ωz}. The term ∆Vσ(r) describes the spin dependent
potential with diffential trapping frequency ∆ω which naturally arises due to the slightly different magnetic moment
between the two relevant internal states. The latter can be additionally tuned by polarization control.

In the eigenmode basis the single particle Hamiltonian simplifies to

Ĥsp =
∑
ni

(
(ni +

1

2
) · ~ω N̂ni + (ni +

1

2
) · ~∆ω σ̂Zi

)
(S3)

where N̂ni = ĉ†ni↑ĉni↑ + ĉ†ni↓ĉni↓ and {σ̂Xi , σ̂Yi , σ̂Zi } =
∑
α,β=↑,↓ ĉ

†
niασ̂αβ ĉniβ with σ̂ the vector of Pauli matrices.

Due to quantum statistics, spin polarized fermions cannot experience s-wave collisions. However, distinguishable
fermions exhibit s-wave interactions described by the Hamiltonian

Ĥint =
4π~2a

m

∫
d3r ρ̂↑(r)ρ̂↓(r) (S4)



where a is the s-wave scattering length and ρ̂σ(r) = ψ̂†σ(r)ψ̂σ(r) is the density operator of particles with spin σ.

Substituting Eq. S2 into Ĥint it becomes

Ĥint =
4π~2a

maxayaz

∑
ni,nj ,nk,nl

Jninjnknl ĉ
†
ni↑ĉnj↑ĉ

†
nk↓ĉnl↓ (S5)

where ax,y,z =
√
~/(mωx,y,z) are the harmonic oscillator lengths along the principal trap axes. The coupling strength

Jninjnknl can be computed as

Jninjnknl =
∏

p=x,y,z

ap

∫
drp φ

↑
npi

(rp)φ
↑
npj

(rp)φ
↓
npk

(rp)φ
↓
npl

(rp) (S6)

The exact solution of this problem is numerically intractable even for 10 particles. However, in the weakly interacting
regime and weak spin dependent potential (∆Vσ(r) � V0(r)), it is possible to simplify the interaction Hamiltonian
while still capturing the main physics, by making the key approximation that when particles collide, the single particle
energy penalty to change modes after a collision suppresses mode changes. Under this picture the only relevant
collisional processes that take place are those in which particles remain fixed in their modes. Colliding partners are
however allowed to exchange their internal state. The two possible processes are:

• Spins remain the same: ni = nj , nk = nl, J zij = Jnininjnj

• Spins flip: ni = nl, nj = nk, J zij = Jninjnjni .

With with spin dependent potential, the single-particle wavefunctions for the two spin states are approximately the
same and therefore Jij ≡ J⊥ij ≈ J zij . Consequently the interaction Hamiltonian remains SU(2) invariant, and it is
described by a collective Heisenberg spin model

Ĥint/~ ≈ −
1

4

∑
ij

Jij σ̂i · σ̂j = −
∑
ij

Jij ŝi · ŝj (S7)

where ŝ = 1
2 σ̂ are spin-1/2 operators. We have written the spin coupling amplitudes as Jij = UJij with U =

4π~a/(maxayaz).
Since in this frozen-motion approximation, N̂n remains a constant, the first term in Eq. (S3) can be dropped

from the Hamiltonian. The total Hamiltonian thus takes the form of a Heisenberg spin model plus an additional
inhomogeneous transverse field

Ĥ/~ =
∑
i

hiŝ
Z
i −

∑
ij

Jij ŝi · ŝj (S8)

where i, j run over the occupied modes and hi = 2ni ·∆ω is the differential local field experienced by an atom in the
ni mode

B. Scaling of the spin coupling parameters

The coupling terms Jij involve integrals of the square of two different harmonic oscillator modes, and thus can

mimic long-range interactions. In fact, the integrals can be shown to asymptotically scale as ∼ 1/
√
|npi − n

p
j | in each



direction p. This scaling can be used to approximately estimate the mean value J = 1/N2
∑
i,j Jij

J ∝ 1

N2

∏
p=x,y,z

( Np∑
npi ,n

p
j

1√
|npi − n

p
j |

)

∝ 1

N2

∏
p=x,y,z

(∫ Np

0

dnpi

∫ Np

0

dnpj
1√

|npi − n
p
j |

)
∝ 1

N2
(NxNyNz)

3/2 = N−
1
2 (S9)

with N = NxNyNz, and Nx,y,z are the harmonic oscillator quantum numbers associated with the Fermi level along
each trap direction.

C. Mean-field model

To calculate the many-body dynamics of Ĥint we use a mean-field approximation which neglects quantum corre-

lations between different particles, namely 〈ŝpi ŝ
p′

j 〉 ≈ 〈ŝ
p
i 〉〈ŝ

p′

j 〉. Under this assumption the interacting Hamiltonian

can be written as a non-linear single particle Hamiltonian of the form Ĥmf =
∑
j Ĥ

(j)
mf , where the sum runs over all

occupied single particle modes. The Hamiltonian felt by the jth particle corresponds to an effective self-adjusting
magnetic field generated by its interaction with all other particles in the array. Explicitly

Ĥ
(j)
mf /~ = ŝj ·Bj (S10)

where Bj = (−2
∑
i Jijs

X
i , −2

∑
i Jijs

Y
i , −2

∑
i Jijs

Z
i +hj) with si = 〈ŝi〉 and s±i = 〈ŝ±i 〉. Accordingly, the non-linear

equations are given by

i
ds+
j

dt
= 2
(
sZj
∑
k

Jkjs
+
i − s

+
j

∑
k

Jkjs
Z
k

)
+ hjs

+
j

i
ds−j
dt

= −2
(
sZj
∑
k

Jkjs
−
k − s

−
j

∑
i

Jkjs
Z
k

)
− hjs−j

i
dsZj
dt

= s+
j

∑
k

Jkjs
−
k − s

−
j

∑
k

Jkjs
+
k (S11)

All numerical solutions in the main text are obtained by numerically solving Eq. (S11). On the timescales probed
by the experiment, we see good agreement between the mean-field simulation, which ignores correlations, with exact
solutions which include quantum correlations, confirming the validity of the mean-field model.

Due to the large number of particles (N ∼ 104), a full mean-field model would involve solving ∼ 105 differential
equations, which would be extremely slow. Instead, we solve a smaller system with N0 ∼ 103 and exploit the scaling

of Jij and h̃ with particle number to reproduce the large-N dynamics. Specifically in the small-N0 simulation, we

scale Jij → Jij(N/N0)1/2 and hi → hi(N/N0)1/3 to match the corresponding parameters of the large system.

D. Thermal averaging

To account for the finite temperature of the system, we average over many trajectories of the mean field dynamics.
For a specific realization α, a set of populated modes, {n1,n2, . . .nN}α, are drawn from a Fermi-Dirac distribution

and used to compute s±,Zj,α by numerically solving Eqn. (S11). The process is repeated many times to compute the

thermally averaged observables: 〈s±,Zj (t)〉T = 1
Nα

∑
α s
±,Z
j,α . Here Nα is the number of realizations. The thermally

averaged contrast is computed as S =
√
〈SX〉2T + 〈SY 〉2T .



S2. MEAN-FIELD ANALYTIC SOLUTIONS

Even at the mean-field level, an analytic solution of the non-linear dynamics dictated by Eq. (S11) is not simple due
to the inhomogeneity of the coupling coefficients Jij . The long-range character of the couplings discussed in Sec. S1 B
further allows us to approximately replace the inhomogeneous Jij by an effective all-to-all coupling parameter J . Under

this approximation, the Hamiltonian Eq. (S8) can be written in terms of the collective spin operators Ŝ =
∑
i ŝi as

Ĥ/~ ≈
∑
i

hiŝ
Z
i − JŜ · Ŝ (S12)

In this section, we use two approaches to derive mean-field analytic expressions of the dynamics of Eq. S12. Both
solutions qualitatively capture the behavior of Eq. S8, and they provide complementary insight into the underlying
physics.

A. Lax vector analysis

Many of the features observed in our system can be understood based on the underlying integrability of the fully
connected Heisenberg model, such as the nature of the two dynamical phases, the non-analytical scaling of the order
parameter (see Fig. 3G), and of the oscillation frequency of the dynamical ferromagnet (see Fig. 3H) close to the
non-equilibrium critical point. This analysis parallels the techniques of Refs. [30, 53, 54] for the non-equilibrium
quench dynamics of BCS-type models, which are formally equivalent to the spin model with homogeneous spin-spin
interactions, Eq. S12, in Anderson’s pseudo-spin representation. In the BCS models, the ŜZ ŜZ component of the
interactions is not present. However, since this term reduces to 2ŜZ〈ŜZ〉 at the mean-field level, it can be rotated

out. Furthermore, for our initial conditions 〈ŜZ〉 = 0, the term exactly vanishes, making the models identical.
Fully connected models such as Eq. S12 admit an exact solution. Its underlying classical integrability allows for an

exact determination of the frequency spectrum ruling non-equilibrium dynamics. We introduce the Lax vector, L(u),
of the complex-valued auxiliary variable u, associated with the Hamiltonian of Eq. S12

L(u) ≡
N∑
j=1

sj
u− hi/2

− Z
J

(S13)

along the lines of Refs. [30, 53, 54]. The squared Lax vector L2(u) is an integral of motion, and can be therefore
evaluated for convenience at time t = 0: it is fixed by the initial non-equilibrium condition. Starting with a spin state
fully polarized along the X-direction gives

LX(u) =
1

2

N∑
i=1

1

u− hi/2
, LY (u) = 0 , LZ(u) = − 1

J
(S14)

The 2N roots (coming in complex conjugate pairs) of L2(u) = 0 are the eigenfrequencies governing the dynamics of
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Comparison between numerical solution
of the non-linear mean-field equations and the analytic Lax vector results (Eqs. S16, S17) for the collective model (Eq. S10).
(A) shows the steady state magnetization |S+(∞)| = S(∞), and (B) shows its transient oscillation frequency Ω.

 Fig. S1. Order parameters predicted by Lax vector analysis in a 1D system.

 



the model; the order parameter S+(t) will exhibit oscillatory behavior with frequencies corresponding to these roots.
The locations of the roots in the complex plane also indicate whether the expectation value S+(t) =

∑
i〈ŝ

+
i (t)〉 relaxes

towards zero (demagnetized phase) or towards a non-zero value (dynamical ferromagnetic phase). The demagnetized
phase results when all 2N roots are in the neighborhood of the real axis, since destructive interference among the
different oscillating modes will cause inhomogeneous dephasing. In the dynamical ferromagnetic phase of Eq. S12, we
find two complex conjugate roots separated from the other 2N − 2 roots along the real axis, leading to non-vanishing
S(∞) = |S+(∞)|.

In a 1D system with an axial field of the form hi/2 = (i − N/2)∆ω, the inhomogeneity is h̃ = N∆ω/
√

3. In the
large-N limit, the summation in LX(u) can be approximated by an integral, namely

LX(u) ≈ 1

2∆ω

∫ N/2

−N/2

dζ

u/∆ω − ζ
=

1

2∆ω
ln

(
u/∆ω +N/2

u/∆ω −N/2

)
(S15)

The imaginary part of this expression ranges from 0 to π/(2∆ω), so roots of L2(u) = 0 will exist only if 1/J ≤
π/(2∆ω) = Nπ/(2

√
3 h̃). For J < Jc ≡ 2

√
3 h̃/Nπ, S+(t) relaxes towards a stationary zero value with zero oscillation

frequency (demagnetized phase). For J ≥ Jc, the two complex conjugate roots are given by

u = ±iΩ/2 = ±i
√

3 h̃

2
cot

(√
3 h̃

NJ

)
= ±iNπJc

4
cot

(
π

2

Jc
J

)
(S16)

Accordingly, the steady-state order parameter in this ferromagnetic phase approaches its steady state as [30]

S(t)→ S(∞)

(
1 +

A√
Ωt

cos(Ωt+ ΦA)

)
(S17)

with A and ΦA constants set by the system parameters and initial conditions, and

S(∞) =
∣∣∣u
J

∣∣∣ =

√
3 h̃

2J
cot

(√
3 h̃

NJ

)
=
NπJc

4J
cot

(
π

2

Jc
J

)
(S18)

The oscillation frequency Ω and steady-state magnetization S(∞) can also be obtained by numerically solving the
Bloch equations (Eq. S11). The solutions agree with the analytic expression of Eqs. S16, S17 as shown in ig. S1.

Even though generalization of the Lax vector method to higher dimensions with axial field hi = 2ni · ∆ω is
straightforward, concise analytic expressions of the roots u are not accessible, so we find them numerically. To satisfy
L2(u) = 0, we need to find a pair of complex conjugate numbers u = uRe± iuIm for which LX(u) is purely imaginary,
hence for each uIm, there is a unique uRe (see fig. S2). uRe represents the global precession rate of S+(t) and uIm

represents oscillation rate of S(t).

As shown in ig. S2, LX(u) can be approximated by

LX(u) ≈ i N

2
√

3αh̃
ln

(
iuIm +

√
3αh̃/2

iuIm −
√

3αh̃/2

)
(S19)

where α is a dimensionless constant that depends on the distribution of hi. Using this approximation, similar to the

1D case, we find the parameters that admit a pair of complex roots. For J < Jc ≡ 2
√

3α h̃/Nπ, there are no roots,
but for J > Jc, uIm has a finite value given by

uIm = ±Ω/2 = ±
√

3α h̃

2
cot

(√
3α h̃

NJ

)
, S(∞) =

∣∣∣uIm

J

∣∣∣ =

√
3α h̃

2J
cot

(√
3α h̃

NJ

)
(S20)

We also numerically find that the long time dynamics in the 3D system is well described by the same asymptotic
behavior exhibited by the 1D case

S(t)→ S(∞)

(
1 +

B√
Ωt

cos(Ωt+ ΦB)

)
(S21)

f

f



where B and ΦB are constants determined by system parameters.

The above derivation is based on all-to-all couplings Jij = J . To account for non-collective interactions, we introduce
another renormalization parameter Jeff = βJ leading to

uIm = ±
√

3α h̃

2
cot

(√
3α h̃

NJeff

)
, S(∞) =

∣∣∣∣uIm

Jeff

∣∣∣∣ =

√
3α h̃

2Jeff
cot

(√
3α h̃

NJeff

)
(S22)

B. Bloch equations analysis

For the all-to-all coupling case, the effective magnetic field simplifies to Bj = {−2JSX , −2JSY , −2JSZ +hj} with

S =
∑
i〈ŝi〉. First we note that ŜZ commutes with the Hamiltonian so SZ remains constant during the dynamics.

The initial π/2-pulse used to induce dynamics in our experiment generates a system initially polarized along X, so
SZ = 0. The resulting non-linear Bloch equations obtained from the mean-field Hamiltonian are

ds+
j

dt
= −2iJsZj S+ − ihjs+

j

dsZj
dt

= −iJ
(
s+
j S
− − s−j S

+
)

(S23)

These equations of motion can be rewritten in terms of the spin collective observables S±,Z and the h-weighted

spin-wave variables C±,Z =
∑
j(hj − h)s±,Zj /h̃ (h =

∑
i hi/N and h̃ =

√∑
i h

2
i /N − h

2
) as

dS+

dt
= −ih̃C+ − ihS+

dC+

dt
= −2iJCZS+ − i

∑
(hj − h)2s+

j /h̃− ihC
+

dCZ

dt
= −iJ

(
C+S− − C−S+

)
(S24)

In the gap-protected regime, the particles are expected to be phase-locked, and it is reasonable to assume that
s+
i = S+/N . In the rotation frame h = 0, together with the approximation that Re

(
C+S−

)
≈ 0, which we confirm
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A 3D system with axial fields hi = 2ni · ∆ω where

∆ωx = 0.9∆ωy = 0.8∆ωz, with mean value h and standard deviation h̃. In order to satisfy L2 (u) = 0, LX(u) must be a pure
imaginary number, hence for each uIm, there is one associated uRe that satisfies this condition. The plot shows how LX(u)
(dashed blue line) and uRe (dotted black line) vary with uIm. LX(u) approximately takes the form of Eq. (S19) with α = 1.39
for this set of hi (solid red line).

Fig. S2. Approximate form of the Lax vector in a 3D system.



numerically, we obtain a set of closed equations

d2S+

dt2
≈ −2Jh̃CZS+ − h̃2S+ (S25a)

d2C+

dt2
≈ −Ω2C+ − 2Jh̃CZC+ − h̃2C+ (S25b)

where we define Ω = 2J |S+|. In the large interaction limit, JN/h̃ � 1, neglecting terms proportional to h̃ yields
simple second order differential equations for C+

(0) and S+
(0)

d2C+
(0)

dt2
≈ −Ω2

(0)C
+
(0)

d2S+
(0)

dt2
≈ 0 (S26a)

from which we obtain S+
(0) ≈ N/2 and Ω(0) ≈ NJ . The mean field energy ~Ω(0) matches the energy splitting between

the S = N/2 Dicke states and the S = N/2− 1 states in the quantum model (~JŜ · Ŝ). Similar to the quantum case,
this energy gap is responsible for the robustness of the initial coherent state to dephasing in the mean-field model.

Including corrections of order h̃ and substituting Eq. S27 into Eq. S25a, together with the energy conservation
constraint

h̃CZ = J(|S+|2 −N2/4) (S27)

we obtain

d2S+
(1)

dt2
= −J2S+

(1)

(
4|S+

(1)|
2 −N2

)
/2− h̃2S+

(1) ≡ −
∂V (S+

(1))

∂S+
(1)

(S28)

Eq. (S28) describes the motion of a particle with the generalized coordinate S(1)
+ in the potential V (S+

(1)) given by

V (S+
(1)) =

1

4
J2
(
S+

(1)

)4

+
1

2

(
h̃2 −N2J2/2

)(
S+

(1)

)2

(S29)

The potential written as a function of the order parameter S+ has the characteristic form of the Landau free energy
functional which is often called the “wine bottle” or “Mexican hat” potential, and it describes second-order phase

transitions. For h̃ > NJ/
√

2 it admits a single minimum at S+ = 0, which describes the demagnetized disorder

phase. In contrast, for h̃ < NJ/
√

2, the potential develops a non-trivial minimum, implying finite magnetization
and signaling the development of a broken symmetry. The classical analog corresponds to the case where the system
rolls to the bottom of the wine bottle (see fig. S3). This Landau-Ginzburg picture has been postulated in field

(Eq. (S29)): NJ = 0 (blue): purely harmonic potential, with a minimum at

S+
(1)(∞) = 0; NJ =

√
2 h̃ (yellow): critical point, the potential become purely quartic. For NJ >

√
2 h̃ (green) the trivial case

S+
(1)(∞) = 0 is no longer a stable steady state and the potential exhibits the characteristic Mexican hat shape with minima at

|S+
(1)(∞)| > 0.

Fig. S3. Effective mean-field potential.



theoretical approaches to dynamical phase transitions [17, 18, 65], and Eq. S29 confirms that this is the appropriate
emergent structure starting from the microscopic model Eq. S12. In the steady state, the particle rests at the potential
minimum, yielding

| S+
(1)(∞) |=

{
1
2

√
N2 − 2h̃2/J2, if NJ ≥

√
2 h̃

0, if NJ <
√

2 h̃
(S30)

The dynamical behavior in the two phases is qualitatively different. For NJ �
√

2h̃, the magnetization drops quickly

without oscillations due to dephasing. In the limit NJ �
√

2h̃, the potential in the vicinity around S+
(1)(∞) is nearly

harmonic, V (S+
(1)) ≈

1
2Ω2

(1)(S
+
(1))

2, exhibiting oscillations with frequency Ω(1)

Ω(1) =

√√√√∂2V (S+
(1))

∂2S+
(1)

∣∣∣∣∣∣
S+
(1)
→S+

(1)
(∞)

=

√
(NJ)2 − 2h̃2 ≈ NJ − h̃2

NJ
(S31)

The neglected higher order terms lead to slow damping of those oscillations in the steady state.

In contrast to the Lax vector method where an analytic formula for the roots of L2(u) = 0 is often not tractable for

generic hi distributions, Eqs. S30, S31 are general and simple since they only depend on h̃. On the other hand, they

are only valid for NJ � h̃, as confirmed by comparison between the analytic expressions and numerical solutions. For

NJ � h̃, Eqs. S30, S31 are only approximate, and their quantitative agreement largely depends on the distribution
of hj . For example, if hi are drawn from a 1D cosine distribution, Eqs. S30, S31 become exact.

S3. BEYOND THE SPIN-MODEL APPROXIMATION

A. Non-interacting regime

In the experiment, atoms are trapped in a harmonic potential as well as a magnetic field gradient (V ∝ ∆B · rσ̂z).
This combination leads to periodic spin-dependent displacements of the cloud: the spin components oscillate in
opposite directions, leading to modulation of the magnetization at the same frequency. The atoms also experience a
spin-dependent harmonic potential (V ∝

∑
p=x,y,z ∆ωp p

2σ̂z) due to magnetic field curvature. In the presence of this
additional spin-dependent harmonic potential, oscillations due to ∆B will decay at longer time due to the dephasing
induced by ∆ω. In the spin model Hamiltonian Eq. S8, the effect of ∆ω is incorporated as

∑
i hiŝ

Z
i while the spin-

dependent displacement is ignored. Under this simplification, the magnetization dynamics at zero interaction is given
by

S(t) =
1

2

∣∣∣∣∣∣
∑
j

e−ihjt

∣∣∣∣∣∣ (S32)

The comparison between this analytic expression and numerical simulations, which incorporate both effects, validates
the spin model treatment of the dynamics (see fig. S4). Since the amplitude of fast oscillations damps out for
t > 30 ms with typical experimental parameters, it is fairly reasonable to neglect them.



A B

(A) shows a comparison between the analytic expression
based on the spin model dynamics (dashed blue line) and the non-interacting numerical calculations (solid red line) that include
both a field gradient (∝ ∆B) and a field curvature (∝ ∆ω) in the Hamiltonian. (B) As in A, but with an additional spin-
reversal pulse at the middle of the evolution. The pulse suppresses the dephasing (as seen by the constant level of the dashed
blue line in B) but enhances the amplitude of the oscillation (solid red line). Parameters: N = 3.0× 104 degenerate particles,
kBT = 0.3EF , as = 0, ∆ωx/2π = 0.100 Hz, ∆ωy/2π = 0.043 Hz, ∆ωz/2π = 0.052 Hz.

With the addition of a spin-reversal pulse at the middle of the evolution, the magnetization decay due to ∆ω is
fully reversed, consistent with the the spin model prediction. However, the amplitude of the differential center of
mass oscillations of the two spin components due to ∆B is increased by a factor of two (see Ref. [40]), increasing in
turn the amplitude of the magnetization oscillations. The oscillatory behavior at zero interactions is not captured by
the spin model and is a source of irreversibility in the non-interacting regime. We account for these processes in our
theoretical simulations as an overall noisy background which decreases the amplitude of the magnetization. Roughly
speaking, we multiply by an extra dephasing term e−Γ0t in Fig. 4 where the time is set to t = 100 ms and let Γ0 be a
fitting parameter.

Since single-particle dephasing is different during evolution with a spin-reversal, we fit those data with a higher
value of Γ0, consistent with the increased amplitude of oscillations seen in ig. S4.

B. Interacting regime

Mode-changing collisions, which are not included in the spin model, also lead to magnetization decay. We account for
them phenomenologically by adding an additional collisional dephasing term in the spin model, leading to exponential
decay of the magnetization at a rate Γ = Γ0 + (a/a0)2γ. Here a0 is the Bohr radius, and the parameters Γ0 and γ are
determined from fits to experimental data. The fitted γ is consistent with the expected depolarization rate generated
by mode-changing collisions (see Sec. S6).

S4. DETERMINING THE ZERO-CROSSING OF THE POTASSIUM 40 FESHBACH RESONANCE

Collisions between the F = 9/2, mF = −9/2 and mF = −7/2 channel have a well-studied Feshbach resonance
near 20 mT. However, for these experiments, we needed to improve by an order of magnitude the accuracy to which
the zero-crossing of the Feshbach resonance was known. Using a Ramsey sequence, we measure the magnetization
2S/N remaining after t = 100 ms for various bias fields. We fit the resulting magnetization near the zero crossing
in the range 20.85–20.95 mT for several such data sets with different initial N,T , acquired over several months, to
a Gaussian with constant offset (see fig. S5A–C). Combining these fit parameters, we find the zero-crossing field
Bzc = 20.9068(10) mT, where the uncertainty is dominated by systematic uncertainty in our bias field (as described
in the Methods).

We compare this result to previous experimental results in Table 1. In some cases, the location and width of
the Feshbach resonance [50] were measured, so Bzc is only inferred. In the vicinity of Bzc, the s-wave scattering
length a varies linearly in magnetic field with slope abg/∆, where abg = 169.67(24) a0 [66] and a0 ≈ 0.0529 nm is
the Bohr radius. Our measurement improves the uncertainty of Bzc by an order of magnitude. Although we have
not determined the resonance field B0 independently in this work, if our Bzc is combined with the most accurate
measurements of B0 reported [69, 73], then one finds ∆ = 0.687(2) mT or ∆ = 0.693(2) mT. Note that scattering
lengths for all calculations in this work use Bzc = 20.907(1) mT, B0 = 20.210(7) mT, and abg = 169.67(24) a0.

f

Fig. S4. Magnetization dynamics for noninteracting particles.
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uncertainty of 1 µT from typical field drift during a data run. (E) Best-fit Gaussian widths.
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and without (solid points) a spin-reversal π-pulse at 50ms (A) for B = 20.9056(10)mT,N = 2.7(1)×104, and kBT = 0.33(2)EF ,
and (B) for B = 20.9175(10)mT, N = 2.9(1)× 104, and kBT = 0.30(2)EF . Theory curves are for a = −0.5a0 and a = 2.4a0,
respectively. (C) Magnetization versus magnetic field at a fixed total hold time of 100ms (grey bars in A and B), after a
π-pulse at 50ms. The magnetization shows a characteristic ‘W’ shape. (D) Denser scan in field to determine center of the ‘W’.
(E) Best-fit centers, shown with statistical uncertainty only, fall outside the expectation from fits of ‘U’ profiles (see fig. S5).

Fig.�S5.�Determination�of�the�Feshbach�zero� crossing.�

Fig.�S6.�Spin-echo� amplitude�near�the�Feshbach�zero� crossing.�



B0 (mT) ∆ (mT) Bzc (mT) abg(a0) Method Source

20.15(14) 0.80(11) 20.95 174 cross-dimensional thermalization [67]

20.210(7) 0.8 20.91 174 molecular dissociation [68]

20.220(2) 0.71(2) 20.93 174 molecule rf spectroscopy [69]

20.21 0.75 20.96(1) 174 dephasing of Bloch oscillations [70]

20.21 0.70 20.91(2) 174 lattice expansion dynamics [71, 72]

20.214(1) 0.670(3) 20.884 169.7 molecule rf spectroscopy [73]

20.21 0.697 20.907(1) 169.67 many-body magnetization dynamics this work

Comparison of experimental determinations
of the s-wave Feshbach zero-crossing field Bzc, the Feshbach resonance location B0 and width ∆, as well as the background
scattering length abg used to parameterize the resonance. Directly measured quantities are indicated in boldface, while inferred
or assumed values are in regular font.

An alternate procedure to determine the zero-crossing is to look for a local peak in spin-echo magnetization. If
we apply a spin-reversal rf pulse, or π-pulse, at t = 50 ms, the subsequent evolution of the magnetization depends
strongly on the scattering length a. Near a = 0, the spin reversal leads to nearly full recovery of the magnetization,
as seen in fig. S6A. Near the onset of gap protection, however, near |a| ≈ 3a0, the spin echo induced by the reversal
pulse competes with the spin self-rephasing and leads to decreased magnetization [2], as seen in fig. S6B. At a
fixed interaction time of t = 100 ms with spin reversal at t = 50 ms, we vary the field near a = 0 and observe the
magnetization follows a ‘W’ shape (see ig. S6C). We measure the central lobe of the ‘W’ shape a few times over
several months with slightly different trap alignments and initial N,T and fit the central lobes to Gaussian profiles
with constant offset to find the center locations; one such fit is shown in ig. S6D. The resulting center fields are
significantly lower than Bzc found without spin reversal, represented as the band in ig. S6E. A possible cause is
the presence of the constant magnetic field gradient ∆B. As shown in ig. S4, in the vicinity of the zero-crossing
field, with the addition of a spin echo pulse, the amplitude of the fast oscillation induced by the constant gradient is
non-negligible and might cause the shift of Bzc.

S5. DATA ANALYSIS FOR FINE EXPLORATION OF THE TDP (FIGURE 3)

This section describes the data analysis for Fig. 3 in the main text, exploring the change in dynamics across the TDP.

Roughly 7000 cycles of the experiment were used to create a data set of S versus hold time at h̃ = 2π × 18(1) Hz.

This value of h̃ is realized with a fully circular polarization of the trapping beam (as in Fig. 2B), atom number
N = 3.0 × 104, and temperature T = 0.5TF (higher than the data for Fig. 2). We discard any measurements of S
with mean fraction outside 0.50 ± 0.05, and any initial measurements that are anomalously low. Furthermore, time
sampling was restricted to multiples of 2.5 ms, the trap period, to lessen the effect of single-particle oscillations (see
Sec. S3) especially at short hold times. These cuts left 6300 simulation runs, across 21 time series, which we compared
systematically to numerical calculations. Model calculations were scaled with a phenomenological factor of exp(−Γ0t),
where Γ0 = 1.75 s−1, as described in the main text and used in Figs. 2 and 4. The correction for collisions was not
used here (γ → 0).

The first analysis step compares the time series to the mean-field calculation of non-interacting dynamics (i.e.,
a = 0), which we label SJ=0(t). Interacting data is fit to SJ=0(κt), with κ as the sole fit parameter. The χ2 of this
fit identifies the qualitative departure from non-interacting dynamics as a step in χ2. The result is shown in Fig. 3F.
Uncertainties on the χ2 for each time series are determined by Monte Carlo sampling each data set. For each time
series we create 104 new data sets by sampling the original time series with replacement. Each data set has the same
number of points as the time series it is sampled from. Fitting this ensemble of data sets produces a roughly Gaussian
distribution of χ2. The mean and standard deviation are shown in Fig. 3F as the center value and the uncertainty.
This analysis gives a first indication of the phase transition: data above the critical scattering length ac ∼ 3a0 have
a significantly increased χ2.

To extract a frequency from our data, we fit data to the function

Sfit(t) =

{
SJ=0(t) for t ≤ tG
SJ=0(tG) +ms(t− tG) +Ae−ξt cos (Ω(t− tG)) for t > tG

(S33)

with four fit parameters: tG (“gap time”), frequency Ω, spin-wave damping rate ξ, and slope ms. The form of Sfit(t)

f

f
f

f

Table S1. Determination of 40K Feshbach resonance parameters. 
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Magnetization as a function of time for different scattering lengths. Blue points are experimental
data with error bars reflecting statistical uncertainty; red lines are numerical theory; dashed lines are fits to the function Eq. S33,
as described in Sec. S5. The conditions of the data and theory are those for Fig. 3 in the main text.

Fig. S7. Fits to time series.



relies on the universality of early-time dynamics (depending only on h̃), and the ansatz of gapped dynamics with fixed
Ω at later times. The fitting procedure is iterative: a first round uses A = 0, to determine ms; a second pass holds ms

fixed and varies the remaining four parameters. Fits are seeded with initial conditions that select a local minimum, so
that analysis uncertainties are insensitive to the full complexity of optimization. All fits to data and some examples
of fits to theory are shown in fig. S7.

As expected in the demagnetized phase, fits to extract a frequency are poor for data taken at scattering lengths of
less than ∼ 4a0. Above the transition, χ2 per degree of freedom in fits to Eq. S33 is typically ' 2. From the fits we
extract the frequencies Ω, which we use as an order parameter and which we show in Fig. 3H. From the same Sfit(t)
with best-fit parameters, we interpolate a value for S at t = 100 ms, as a function of scattering length, as another
signature of the TDP. The results are shown in Fig. 3G in the main text.

To determine the location of the TDP, we fit the order parameter with the form

Ω(NJ) =
π

2
βNJc cot

(
NJc
NJ

π

2

)
(S34)

where NJc is the critical interaction strength and β is a scaling factor. Compared with Eqn. S22, we find NJc =

2
√

3αh̃/(βπ). We combine our knowledge of the step in χ2, and the poor fit confidence to exclude frequencies from
time series below 3a0. The frequencies excluded are shown in grey in Fig. 3H in the main text. Despite the fact that
this functional form is only strictly correct in the 1D all-to-all model (Sec. 4), we find that the frequency in the gapped
phase is still linear in J , but with a scaling factor β that reflects the reduction of collectivity due to the reduction of
Jij with mode distance (see Sec. S1 B). The best-fit location of the dynamical critical point is NJc/2π = 7.8(1.1) Hz,
or a critical scattering length ac = 2.8(4)a0, with a scaling factor β = 0.56(1). This implies renormalization factors

α = βπNJc/2
√

3 h̃ ' 0.22(3) and β ' 0.56(1).

Figures 3G,H also show this same analysis procedure applied to the theoretical mean-field numerical results (Sec. 3).
All the same signatures of the TDP are observed. However, this agreement includes an overall scaling of the Jij by
0.8 from their ab-intio values. As discussed in the main text, this is perhaps due to an increased sampling of trap

anharmonicity due to the higher temperature used in this data set to increase h̃, or due to a renormalization of coupling
constants due to resonant mode-changing processes [40, 41]. For the non-thermally averaged steady state data (solid
black lines in Fig. 3), we find NJc/2π = 4.98(0.14) Hz, or a critical scattering length ac = 1.78(5)a0, with a scaling
factor β = 0.55(2). For the thermally averaged finite time data (red lines in Fig. 3), we find NJc/2π = 3.75(0.25) Hz,
or a critical scattering length ac = 1.34(9)a0, with a scaling factor β = 0.54(2). The difference of the best-fit location
of the TDP between the two theoretical treatments is due to the fact that thermal averaging washes out the oscillation
and induces global dephasing that reduces the contrast, as seen in the difference between the black and red curves
in Fig. 3G. This reflects a high sensitivity to dephasing and parameter drift near the critical point, in experimental
runs. Furthermore, the finite time window of measurement and simulation limits the accuracy of Ω near the critical
point, where the period of oscillation diverges.

Also in Figures 3G,H we plot Eqns. 3,4 for α = 0.16 and β = 0.59 (dashed black lines) as a comparison to the mean
field calculations (black and red lines). These values of α and β were chosen to be the closest match to the mean field
steady state calculation (black lines). The value of β is constrained by fitting the slope in Figure 3H. The ratio α/β
is set by the critical point. Note that these values of α and β were not determined by the piece-wise fitting algorithm.

S6. SCATTERING RATE OF THE NON-EQUILIBRIUM GAS

In this section, we estimate the collision rate using a kinetic theory. The semi-classical distribution function f(x,p, t)
(normalized to (2π~)−3

∫
d3xd3pf = N) is changed due to collisions at a rate

C[f(x,p1, t)] =

∫∫
d3p2

(2π~)3

d3p3

(2π~)3
W (x,p1,p2,p3,p4) δ(ε1 + ε2 − ε3 − ε4)

× {f1f2(1− f3)(1− f4)− f3f4(1− f1)(1− f2)} (S35)

where f1 = f(x,p1, t), etc.; W (. . .) is the scattering probability from 1, 2 to 3, 4; and p4 is fixed by conservation of
momentum. In equilibrium, C[feq] = 0, because the scattering rate into each volume in phase space is equal to the
scattering rate out. We can separate these two rates, as C(x,p) = C+ − C−, and define the total collision rate as

Ṅcoll =

∫∫
d3x d3p1

(2π~)3
C+(x,p1) (S36)



With local translational symmetry and s-wave interactions

C+[f(x,p1)] =

∫
d3p2

(2π~)3

∫
dΩ

dσ

dΩ
|v1 − v2| f1f2(1− f3)(1− f4) (S37)

where f1 = f(x,p1), etc [74]. In the low-energy, momentum-independent limit, dσ/dΩ = σ/4π, σ = 4πa2. In this
case

Ṅcoll = σ

∫∫∫
d3x

d3p1

(2π~)3

d3p2

(2π~)3

dΩ

4π
|v1 − v2| f1f2(1− f3)(1− f4) (S38)

where dΩ = dφ cos θdθ, and φ, θ give the angles of p3 − p4.

A. Equilibrium scattering rate

For a degenerate Fermi gas in an equal mixture of two spin states, Lepers et al. [74] write

Ṅcoll,FG =
1

4π4

∫
d3r

∫ ∞
0

dk k2

∫ ∞
0

dq q2 2q

m
σ(q)

[
tanh−1(tanh X

2 tanh Y
2 )

Y sinhX

]2

(S39)

where X ≡ β(k2/8m + q2/2m + VT − µ) and Y ≡ βkq/2m. For a harmonic trap VT , we can rescale the spatial
coordinates to be spherically symmetric, and then pull all dimensional factors out of the integral for r, k, and q. Using
VT = 1

2mω
2r2 → r′2/2, βk2/m → k′2, the integrations are d3r = (βmω2)−3/24πr′2dr′ and dkk2 = (m/β)3/2dk′k′2.

Now (dropping primes) X → k2/8 + q2/2 + r2/2− µβ and Y → kq/2, such that

Ṅcoll,FG =
2

π3

mσ

β5ω3

∫ ∞
0

dr r2

∫ ∞
0

dk k2

∫ ∞
0

dq q3

[
tanh−1(tanh X

2 tanh Y
2 )

Y sinhX

]2

︸ ︷︷ ︸
≡F (βµ)

Using the relation N↑(βω)3 = −Li3(−z↑), where Li3 is a polylog function and z = eβµ is the fugacity, we insert two
factors of number

Ṅcoll,FG

N↓
=

(
N↑
2π2

mσβω3

)
4F (βµ)

πLi3(−z↑)Li3(−z↓)
(S40)

In this form, the collision rate of the Fermi gas can be compared to the collision rate of a spin mixture in the
Maxwell-Boltzmann limit

Ṅcoll,Boltz

N↓
→ 1

2π2
N↑mσβω

3 (S41)

The two effects of Fermi degeneracy are a change in position and momentum distributions, and the blocking of
collisions due to occupied final states. Lepers et al. provide a formula that neglects the latter: the rate of all collisions
(even those that are blocked) is [74]

Ṅ
(+blocked)
coll,FG =

1

4π4

∫
d3r

∫ ∞
0

dk k2

∫ ∞
0

dq q2 2q

m
σ(q)

tanh−1(tanh X
2 tanh Y

2 )

Y eX sinhX
(S42)

which results in an expression like Eq. S40, but with

F (+blocked)(βµ) =

∫ ∞
0

dr r2

∫ ∞
0

dk k2

∫ ∞
0

dq q3 tanh−1(tanh X
2 tanh Y

2 )

Y eX sinhX
(S43)
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The dimensionless collision rate, Eq. S47, is shown versus
reduced temperature. The coefficient is chosen to be βEF at high temperature (blue dashed line). The low-temperature
behavior is dominated by blocking (dotted red line). From this dimensionless Cγ , one finds the scattering rate by multiplying
by γ0 = N↑mσω

3/2π2EF . See also Ref. 75.

The low-temperature limit of Eq. S42 is

Ṅ
(+blocked)
coll

N↓
≈ 0.21

N↑mσω
3

EF
(S44)

which is scales as one would expect from nσvrel, with a Thomas-Fermi cloud shape and an average relative velocity
proportional to the Fermi velocity.

Blocking will further reduce the collision rate as (T/TF )2 at low temperature. This can be calculated by taking the
ratio of the two dimensionless integrals

rallowed ≡
Ṅcoll

Ṅ
(+blocked)
coll

=
F (βµ)

F (+blocked)(βµ)
−→ const.× T 2

E2
F

(S45)

At low temperature, “const.” is ≈ 5, so that

Ṅcoll

N↓
≈ 1.0

N↑mσω
3

EF

T 2

E2
F

for T � TF (S46)

This is roughly equal to (but slightly higher than) the value given by Ghem et al. [75], who give a pre-factor of
15/2π2 ≈ 0.76 at low temperature.

Figure S8 summarizes these results in dimensionless form: the scattering rate is

Ṅcoll

N↓
= Cγγ0 where γ0 ≡

N↑mσω
3

2π2EF
and Cγ =

4βEFF (βµ)

πLi3(−z↑)Li3(−z↓)
→

{
(T/TF )−1 for T � TF ,

2π2(T/TF )2 for T � TF
(S47)

with a peak value Cγ ≈ 1.3 at T ≈ 0.5TF , in agreement with Ref. [75].

For our typical experimental parameters, with 2N↑ = 3× 104 40K atoms in a trap with ω/2π = {393, 1140, 950}Hz,
the reference scattering rate is γ0 = 0.0084 s−1(a/a0)2 where a0 is the Bohr length. For 0.5TF , we multiply by
Cγ = 1.3 (see ig. S8) to find a scattering rate of 0.011 s−1 times (a/a0)2.

B. Finite polarization, prepared out of equilibrium

This calculation so far has considered an unpolarized mixture, characterized by a single chemical potential, and
an equal number of particles. For an imbalanced non-degenerate mixture, Eq. S41 tells us that Ṅcoll ∝ N↑N↓. The

collision rate per particle depends on which type of particle interests us: Ṅcoll/N↑ ∝ N↓, and Ṅcoll/N↓ ∝ N↑. In
other words, the scattering rate of the majority species is highly sensitive to polarization, but scattering rate seen by
impurities is relatively insensitive. Choosing N↑ to be the majority population, we can define both polarization P

f

Fig. S8. Equilibrium scattering rate versus temperature.



and a minority fraction x, such that

N↑/N = (1 + P )/2 = (1− x) (majority) and N↓/N = (1− P )/2 = x (minority) (S48)

Or, written in comparison to an unpolarized gas, N↑,↓ = (N/2)(1± P ). Then the scattering rates scale as

Ṅcoll,Boltz

N↑,↓
= N↓,↑

mσβω3

2π2
=

(
Ṅcoll,Boltz

N/2

)
P=0

× (1∓ P ) (trapped Boltzmann gas) (S49)

In other words, the total (extensive) collision rate scales as 1− P 2, or 4x(1− x), for constant β.

An estimate of the polarization in our experiment comes from the maximum contrast in a Ramsey sequence. The
visibility of a fringe is V = (Nmax −Nmin)/(Nmax +Nmin). For a mixture with N↑ > N↓, this visibility is

V =
N↑ −N↓

N
= 1/2 + P/2− (1/2− P/2) = P (S50)

So, the upper bound of fringe visibility is P . For our best data sets, this is P ≈ 0.8, such that the scattering rate per
majority particle is ≈ 0.2 times the rate that would be estimated for a balanced thermal gas.

For a degenerate gas, we need to be more careful when applying this correction. An imbalanced gas would have
different spatial distributions, momentum distributions, and blocking factors for the minority and majority popula-
tions.

In our experiment, the gas is initialized when fully polarized (but at finite temperature). We assume that some
de-polarization occurs, but without rearrangement among non-interacting eigenstates. We furthermore assume that
the depolarization is uniform among all occupied states. Calling the majority ↓, the occupation functions for the two
spin states can then be written

f↑ = (N↑/N)f i ≡ xf i and f↓ = (N↓/N)f i = (1− x)f i (S51)

where f i is the distribution of the initially polarized gas.

These distribution functions are then put into the scattering rate Eq. S36

Ṅcoll,pol =

∫
d3x d3p1

(2π~)3
C+(x,p1)

=

∫∫∫
d3x d3p1

(2π~)3

d3p2

(2π~)3

d3p3

(2π~)3
W1234 δ(∆ε) f↓,1f↑,2(1− f↓,3)(1− f↑,4)

≡ 〈f↓,1f↑,2〉 − 〈f↓,1f↑,2f↓,3〉 − 〈f↓,1f↑,2f↑,4〉+ 〈f↓,1f↑,2f↓,3f↑,4〉
= x(1− x)〈f i1f i2〉 − x(1− x)〈f i1f i2f i3〉+ x2(1− x)2〈f i1f i2f i3f i4〉 (S52)

where in the last line we have used 〈f i1f i2f i3〉 = 〈f i1f i2f i4〉.
We can relate many of these 〈. . .〉 terms to equilibrium scattering rates, because f i is the distribution of a single

spin state in an equilibrium Fermi gas, which is also the distribution of either spin state in a balanced Fermi gas with
2N atoms, but the same T/TF . For instance, taking only the first term

Ṅcoll,pol = x(1− x)〈f i1f i2〉 = x(1− x) Ṅ
(+blocked)
coll,FG

∣∣∣
unpol,2N

(S53)

which is calculated using Eq. S42. To see that this is correct in the high temperature limit, we use Eq. S41

Ṅ
(+blocked)
coll,FG

∣∣∣
unpol,2N

→ N2mσβω
3

2π2
so that Ṅcoll,pol → N↑N↓

mσβω3

2π2
(S54)

since x(1 − x)N2 = N↑N↓. This agrees with Eq. S49. However, the full expression, Eq. S53, correctly includes the
FD modification of the initial distribution.

Next, we find an estimate of Pauli blocking in the weakly degenerate regime. This relies upon the assumption that

x(1− x)〈f i1f i2f i3f i4〉 � 〈f i1f i2f i4〉 (S55)
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The dimensionless collision rate per spin-↓ atom is plotted versus temperature.
The “polarized gas” estimate (solid blue line) is from Eq. S57; it exceeds the normalized equililibrium rate (dotted red line)
for an unpolarized gas because Pauli blocking is absent for the final states of a minority population in the strong-polarization
limit x� 1 (see text).

which would be an appropriate assumption if x� 1 and/or f � 1. In the equilibrium balanced gas of 2N particles

rallowed =
〈f1f2 − 2f1f2f3 + f1f2f3f4〉

〈f1f2〉
≈ 1 +

〈−2f1f2f3〉
〈f1f2〉

or
〈−f1f2f3〉
〈f1f2〉

≈ − 1− rallowed

2
(S56)

and (starting from Eq. S52 and also dropping the four-f term)

Ṅcoll,pol ≈ x(1− x)
[
〈f i1f i2〉 − 〈f i1f i2f i3〉

]
≈ x(1− x) Ṅ

(+blocked)
coll,FG

∣∣∣
unpol,2N

×
(

1− 1− rallowed

2

)
(S57)

In other words, the depolarizing gas of N particles is “half as blocked” as the equilibrium gas of 2N particles, under
the assumption given by Eq. S55. For instance, at T = 0.5TF , 1 − rallowed ≈ 0.3, so for a depolarizing case, the
blocking effect is half this, only ≈ 0.15.

With the experimental conditions N↑ + N↓ = 3 × 104, ω̄/2π = 750 Hz, and P = 0.8 or x = 0.1, these various
approximations give the following estimates. Choosing the majority population as a reference, we define the ini-
tial Fermi energy EFi = EF (N↓ = N), the initial degeneracy factor ti = kBTi/EFi, and the reference scattering

rate γ0|2N = Nmσω3/2π2EFi, which for a 3D gas is 22/3 larger than the scattering rate used when discussing an
unpolarized gas, γ0|N = (N/2)mσω3/2π2EF (N↓ = N/2), in the previous section.

At kBTi = 0.5EF (N↓ = N), the non-degenerate estimate is (from Eq. S49) Ṅcoll,Boltz/(1 − x)N = x γ0|2N t
−1
i or

≈ 0.0027 s−1(a/a0)2. For a Fermi gas, Ṅcoll,pol/(1− x)N is ≈ 0.0020 s−1(a/a0)2, to which blocking contributes 15%
reduction.

At kBTi = 0.3EF (N↓ = N), the non-degenerate estimate is higher (0.0044 s−1(a/a0)2), but now the Fermi distri-
bution makes a 25% effect, the blocking is a 30% effect, and the final rate is comparable: 0.0024 s−1(a/a0)2. One can
see this gentle slope in the “polarized gas” line in ig. S9.

Since these estimates concur with the best-fit γ ' 0.002 s−1(a/a0)2 shown in Fig. 4 in the main text, we conclude
that mode-changing collisions are responsible for the a-dependent breakdown of the spin model. These calculations also
predict that an improved polarization (for instance, by further reducing gradients, see Sec. S3) and lower temperatures
could extend the range of its validity.

f

Fig. S9. Nonequilibrium scattering rate.
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