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Time-local stochastic equation of motion for solid ionic electrolytes
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Numerical studies of ionic motion through solid electrolytes commonly involve static nudged-elastic band
methods or costly ab initio molecular dynamics. Building on a time-local model of current carrier-electrolyte
interaction and incorporating thermal motion, we introduce an approach that is intermediate between the two
well-established methodologies by treating the electrolyte as an effective medium that interacts with the mobile
particle. Through this coupling, the thermally vibrating electrolyte imparts energy to the charge carriers while
also absorbing energy from them due to its own finite elasticity. Using a simple model system, we validate our
approach through a series of numerical simulations. Our methodology reproduces both dissipative and diffusive
behavior and helps link microscopic system parameters to measurable macroscopic properties.

DOI: 10.1103/jnzr-q953

I. INTRODUCTION

Ionic transport through solids [1,2] is a fundamental
physics problem at the root of solid-state batteries [3–5],
hydrogen fuel cells [6], electrolysis cells [7], and electrochem-
ical synapses [8]. This transport consists of current-carrying
mobile ions traveling through an electrolyte whose constituent
atoms remain close to their equilibrium positions, retaining
the structural integrity of the material. Compared to their
liquid counterparts, solid electrolytes can enhance device ro-
bustness by suppressing dendrite formation [5] and operate
over a larger temperature range [3,4]. Microscopically, the
mobile conducting ions intermittently become trapped in, and
escape from, local potential energy minima within the elec-
trolyte, leading to macroscopic limits on conductivity. Despite
solid-state electrolytes’ advantages, their conductivity is cur-
rently smaller than traditional liquid electrolyte technology
[3], so substantial effort is being dedicated to finding materials
with better transport properties. One avenue in this effort is to
find materials that minimize the amount of trapped time the
mobile ions spend in potential wells.

In recent years, the search for better electrolyte materials
has been dominated by various ab initio methods, which
provide a glimpse into the microscopic processes of ionic
conduction. While some efforts have focused on which mate-
rial properties facilitate escape from potential minima [9–12],
others have explored conduction mechanisms that reduce
the chance of ions becoming trapped [13–20]. The most
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common computational approaches—nudged elastic band
(NEB) calculations and ab initio molecular dynamics (AIMD)
simulations—have somewhat complementary strengths and
shortcomings.

In NEB calculations, the mobile ion location varies from
one energy minimum to another in a series of steps—at each
location, the ion is held fixed along the transport direction
while the rest of the system relaxes. The total energy is calcu-
lated along the ion’s path, and the maximum is the activation
energy Ea. This quasistatic NEB approach to estimate Ea can
help efficiently suggest material classification. A common
technique uses Ea to predict charge carrier number (and, by
extension, conductivity) scaling with temperature using the
Arrhenius form: e−Ea/kBT . However, recent work [21] has
shown that this Arrhenius dependence can break down even
when the electrolyte consists of a single one-dimensional
oscillator. Moreover, since NEB calculations are quasistatic,
they do not capture the dynamical effects that determine the
prefactor for the Arrhenius term.

AIMD computes the trajectories of each of the framework
atoms and the mobile ions in the presence of externally in-
duced thermal motion. These simulations make it possible
to estimate mobility either using the Nernst-Einstein rela-
tion and numerically determined diffusivity or directly using
an applied bias voltage [19]. While the evolution in these
trajectories is governed by realistic forces calculated from
first principles with density functional theory, this approach
is very computationally costly. To keep computational re-
sources manageable, a typical calculation evolves the system
at extremely high temperatures for only several nanoseconds,
and is limited to a few unit cells. For similar reasons, direct
computations of the mobility require extreme electric field
strengths (e.g., Ref. [19] used 0.075 V/Å = 7.5 × 108 V/m,
about 250 times higher than the breakdown voltage of air).
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In this paper, we use microscopic theory to construct a
stochastic single-particle equation to describe the motion of
a mobile ion. This formalism incorporates dynamical effects,
which do not arise in NEB calculations, and can evolve un-
der more realistic system parameters than are feasible with
AIMD computations. At the cost of using less realistic po-
tentials, this tool can complement the other methods as part
of a multipronged approach to identify promising electrolyte
candidates. Its primary utility comes from allowing dynamical
simulations at longer timescales, and over a greater tempera-
ture range, leading to improved statistics and direct prediction
of temperature scaling.

This paper is organized as follows: We give a microscopic
description of ionic motion through a solid electrolyte in
Sec. II. There we show that the displacement of the elec-
trolyte’s atoms in response to the mobile ions is given by
a transcendental time-local Eq. (16). Next, we introduce a
model system in Sec. III and validate our time-local treatment
in Sec. IV, where we show that additional simplifications
remove the transcendental nature of Eq. (16). We demonstrate
our formalism’s power to capture dissipation and diffusion
in Secs. V and VI, respectively. In Sec. VII, we discuss the
results, assumptions, limitations, and consequences of our
study, and conclude with a summary in Sec. VIII.

II. MODEL

As in our earlier work [22–26], we start with a Lagrangian
describing the motion of a particle of mass M through a
crystalline framework:

L = M

2
ṘT Ṙ + 1

2
ṙT ↔

m ṙ − rT

↔
V
2

r − U (r, R). (1)

Here, R is the mobile particle’s position, r is a vector of
framework atom displacements from their equilibria, and

↔
m is

the framework’s mass matrix. rT
↔
V r/2 gives the framework’s

potential energy in the harmonic approximation and U (r, R)
is the interaction between the framework and particle.

Equation (1) yields the standard equations of motion:

MR̈ = − ∇RU (r, R), (2)

↔
m r̈ = − ↔

V r − ∇rU (r, R). (3)

Although Eqs. (2) and (3) contain all the information neces-
sary to solve the problem, they are unmanageable for large
systems. Fortunately, it is possible to write down a formal
solution for r which can then be used to solve Eq. (2). We
start by writing Eq. (3) as a symmetric eigenvalue problem

↔
m

1
2 r̈ = −0+ṙ− ↔

m
− 1

2 ↔
V

↔
m

− 1
2

(
↔
m

1
2 r

)
− ↔

m
− 1

2 ∇rU (r, R),

(4)
where 0+ is an infinitesimal dissipation. Without the final
term, r describes a homogeneous solution for the framework
which corresponds to thermal vibration. We will address this
motion component below and focus on the framework’s re-
sponse to its interaction with the particle first. Taking the
Fourier transform of Eq. (4) with respect to time and solving

for rω gives

rω = ↔
m

− 1
2

(
ω2 + iω0+− ↔

m
− 1

2 ↔
V

↔
m

− 1
2

)−1 ↔
m

− 1
2

× F[∇rU (r, R)], (5)

where F[. . . ] denotes the Fourier transform. Because
↔
m

− 1
2 ↔
V

↔
m

− 1
2 is a real symmetric matrix, there exists a matrix

D = [ε1, ε2, . . . ] such that D† ↔
m

− 1
2 ↔
V

↔
m

− 1
2

D =↔
�

2
, where

↔
�

2

is a diagonal matrix and ε j are eigenstates of
↔
m

− 1
2 ↔
V

↔
m

− 1
2 .

Thermally excited eigenmodes produce the homogeneous
framework motion referred to above. Taking the eigenvalues
for the jth state to be �2

j , we have(
ω2 + iω0+− ↔

m
− 1

2 ↔
V

↔
m

− 1
2

)−1

=
∑

j

ε jε
†
j

(ω + i0+)2 − �2
j

,

(6)
leading to

r =
∑

j

F−1

⎡
⎢⎣

↔
m

− 1
2

ε jε
†
j

↔
m

− 1
2

(ω + i0+)2 − �2
j

⎤
⎥⎦ ∗ ∇rU (r, R)√

2π
, (7)

where ∗ denotes the convolution. Using

1√
2π

F−1

[
1

(ω + i0+)2 − �2
j

]
= − sin � jt

� j
�(t ), (8)

where �(t ) is the Heaviside step function, we have

r(t ) = −
∫ t

0
dt ′ d

↔
W (t − t ′)

dt ′ ∇rU [r(t ′), R(t ′)], (9)

↔
W (t ) = ↔

m
− 1

2
∑

j

ε jε
†
j

cos(� jt )

�2
j

↔
m

− 1
2

. (10)

Having obtained the particular solution determined by the
forcing term, we add the homogeneous trajectory rH (t ) to
Eq. (9). Integrating the forcing term by parts gives

r(t ) = rH (t ) −

↔
V

−1︷ ︸︸ ︷
↔

W (0) ∇rU [r(t ), R(t )]

+ ↔
W (t )∇rU [r(0), R(0)]

+
∫ t

0
dt ′ ↔

W (t − t ′)
d

dt ′ ∇rU [r(t ′), R(t ′)]. (11)

The third term on the right-hand side goes to zero at large t be-
cause it is a sum of oscillating cosine functions. Therefore, we
will drop it in the subsequent analysis. If the time derivative of
the force vanishes, we can introduce δ ≡ r − rH so Eq. (11)

becomes δ = − ↔
V

−1 ∇rU [rH + δ, R]. This expression corre-
sponds to a fully relaxed static framework configuration for a
particular R with the equilibrium framework positions shifted
by rH , reminiscent of the quasistatic NEB formulation. There-
fore, we can view the final term in Eq. (11) as the dynamic
correction to the static NEB result.
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At this point, we have a formal solution for the frame-
work motion, having avoided solving Eq. (3) for an infinitely
large number of degrees of freedom. In fact, because our
main goal is the particle trajectory, we can focus only on
framework atoms that are sufficiently close to the particle to
exhibit a non-negligible force, making the size of r finite.
Unfortunately, even with this simplification, the expression
for r involves a memory integral. Therefore, our next goal
is to convert this expression into an approximate time-local
form.

We start by noting that, for a system containing A atoms
per unit cell, the eigenvectors ε j are

ε j = 1√
N

⎛
⎜⎜⎜⎝

eiL1·q j

eiL2·q j

...

eiLN ·q j

⎞
⎟⎟⎟⎠ ⊗ η j, (12)

where N is the number of unit cells in the system, q j is the
crystal momentum corresponding to the mode j, Ln is the
coordinate of the nth unit cell, and η j is a 3A-dimensional
eigenvector of the dynamical matrix [27].

To proceed, we assert that low-frequency, long-wavelength
(small q j) modes play the dominant role in the response
kernel in Eq. (10). This low-energy phonon dominance is
due to suppressed coupling to high-frequency modes: the
�2

j in the denominator. Moreover, even though the num-
ber of modes grows with frequency due to the increasing
phase space, their short wavelength makes them much more
susceptible to destructive interference. This assertion yields
two consequences. First, we neglect the phase difference
between all the unit cells close to the mobile ion and
replace eiLn·q j → 1 in ε j . Second, the true form of the high-
energy dispersion is unimportant, allowing us to linearize the
spectrum.

To linearize the spectrum, we start with the dynamical
matrix

D(q) = 1

N

∑
ab

[
↔
m

− 1
2 ↔
V

↔
m

− 1
2

]
ab

ei(La−Lb)·q

≡
∑

L

[
↔
m

− 1
2 ↔
V

↔
m

− 1
2

]
L

eiL·q, (13)

where [
↔
m

− 1
2 ↔
V

↔
m

− 1
2 ]ab are 3A × 3A blocks coupling unit cells

at La and Lb. The last equivalence holds because of lattice pe-

riodicity, so [
↔
m

− 1
2 ↔
V

↔
m

− 1
2 ]ab depends on the difference La − Lb

with [
↔
m

− 1
2 ↔
V

↔
m

− 1
2 ]L corresponding to the coupling block for

two unit cells separated by vector L. Next, we write D(q) →
D0(θ, φ) + q2D1(θ, φ), where θ and φ are the polar and az-
imuthal angles of q, respectively. The three zero-frequency
eigenstates of D0(θ, φ) are then labeled by the angles and
the acoustic branch index u: ηu,θ,φ . Because the perturbation
term q2D1(θ, φ) is second order in q, the eigenstates ηu,θ,φ

are unchanged up to the first order in q. The frequency, on the
other hand, is q

√
η†

u,θ,φD1(θ, φ)ηu,θ,φ ≡ qvu,θ,φ , where vu,θ,φ

is the direction-dependent speed of sound of the uth phonon

branch. If D0(θ, φ) vanishes, ηu,θ,φ are the eigenstates of

D1(θ, φ) and q
√

η†
u,θ,φD1(θ, φ)ηu,θ,φ ≡ qvu,θ,φ still holds.

In the q → 0 limit, all atoms in a unit cell move in the same
direction with the same amplitude, so

↔
m

− 1
2

ε j ≈ 1√
mN

⎛
⎜⎜⎝

↔
1 3↔
1 3
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
K

ψu,θ,φ, (14)

where m is the total mass of the unit cell, K is a column

of NA copies of the 3 × 3 identity matrix
↔
1 3, and ψu,θ,φ is

the three-dimensional phonon polarization vector. Using these
simplifications, we write Eq. (10) as

↔
W (t ) 
 KV/m

8π3

∑
u

∫
dqψu,θ,φψ†

u,θ,φ

cos(qvu,θ,φt )

q2v2
u,θ,φ

KT

= K
∑

u

∫ Q

0

dq

8π3ρ

∫
dSψu,θ,φψ†

u,θ,φ

cos(qvu,θ,φt )

v2
u,θ,φ

KT


 K
∑

u

∫
dS

8π2ρ
ψu,θ,φψ†

u,θ,φ

δ(t )

v3
u,θ,φ︸ ︷︷ ︸

2Lδ(t )

KT , (15)

where V is the unit cell volume, ρ = m/V is the mate-
rial’s density, and dS denotes the integral over the solid
angle. The maximum momentum Q is similar to the cutoff
appearing in the Debye model for a linearized spectrum.
In the last line, we took the limit Q → ∞ to get the
time-local expression. Physically, this approximation means
that the relevant dynamics of the system are substantially
slower than the fastest mode. The 3 × 3 matrix L gives
the approximate time-local response in the linear-spectrum
approximation.

Inserting Eq. (15) into Eq. (11) and taking the time integral
gives a time-local transcendental equation for r,

r ≈ rH− ↔
V

−1 ∇rU (r, R) + KLKT ∇r
d

dt
U (r, R)

= rH− ↔
V

−1 ∇rU (r, R) − KL∇R
d

dt
U (r, R), (16)

where we used the fact that KT ∇r f (r, R) = ∇r f (r, R)K =∑
jk ∇r j,k f (r, R) = −∇R f (r, R) to replace the gradient with

respect to r applied on U . In other words, the uniform shift
of the framework generated by K is physically equivalent to
a shift of the mobile particle in the opposite direction. Our
aim is to use the time-local form in Eq. (2) to obtain the
mobile particle’s trajectory. First, however, we validate the
time-local approximation and build intuition by performing
a set of numerical experiments using a model system intro-
duced in Sec. III. We then show, in Sec. IV, that we can
simplify Eq. (16) by replacing r → rH on the right-hand side,
leading to

r = rH− ↔
V

−1 ∇rU (rH , R) − KL∇R
dU (rH , R)

dt
, (17)
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allowing us to write the differential equation for R,

MR̈ = − ∇RU (reff , Reff ), (18)

reff = rH− ↔
V

−1 ∇rU (rH , R), (19)

Reff = R + L∇R
dU (rH , R)

dt
, (20)

where the last term of Eq. (17) was combined with the R
inside U in Eq. (17) because it corresponds to a uniform
framework shift.

III. MODEL SYSTEM

The aim of this section is to introduce a tractable model
system and justify our parameter choices.

Typical scales for physical quantities in solid materials
are meV for kinetic energies, Å for lengths, and ps for times.
Normalizing our system parameters by these quantities

implies a mass scale, where [m] = [E ]/[v2] = [E ][t]2/[
]2.
A dimensionless mass M = 1 then corresponds to
1 meV ps2/Å2 ≈ 9.66 Da. One of the most common mobile
ion species, Li, then has mass M ≈ 0.7, and the lattice (most
commonly formed from Si, Ge, S, and P) then has mass
m ≈ 3.5.

The simplest three-dimensional crystal is a cubic lattice
containing a single atom per unit cell, shown in Fig. 1(a). A
typical nearest-neighbor distance for monoelemental simple
cubic, bcc, and fcc lattices is about 3 Å, or a ≈ 3. This size is
within the range of previous benchmarking studies of sulfur
model solid electrolytes, with volume per atom of 20–70
Å3 [9]. We stress that cubic lattices generally do not make
good ionic conductors, but we chose this simple geometry for
demonstration purposes only.

Each atom is coupled to its nearest (next-nearest) neighbors
via springs with force constants k1 (k2), so the dynamical
matrix is

D(q) = 2
k1

m

(
1 − cos qxa 0 0

0 1 − cos qya 0
0 0 1 − cos qza

)

+ 2
k2

m

(
2 − cos qxa cos qya − cos qxa cos qza sin qxa sin qya sin qxa sin qza

sin qya sin qxa 2 − cos qya cos qxa − cos qya cos qza sin qya sin qza
sin qza sin qxa sin qza sin qya 2 − cos qza cos qxa − cos qza cos qya

)
,

(21)

with qx,y,z = 2π [1, 2, . . . , Nx,y,z]/Nx,y,za. Keeping k2 �= 0 is
important because, in its absence, the Cartesian coordinates
become decoupled, decomposing the lattice into individual
one-dimensional systems.

The highest phonon angular frequency in the system
considered here is �max = √

4k1/m + 8k2/m, corresponding
to the X point in the Brillouin zone. Taking a reasonable
maximum cycle frequency fmax = 5 THz, corresponding to
≈20 meV, we have �max = 2π fmax = 10π ps−1. The choice
of 5 THz is on the lower end of frequencies found in
softer monoelemental systems or two-element ionic con-
ductors (such as lithium halides [28]), picked to get a
physically appropriate speed of sound. For a reasonable
value k1/k2 ≈ 3, we then have k2 = 5π2m ≈ 170 meV/Å2

and k1 ≈ 520 meV/Å2. These values translate to ≈15π Å/ps
(≈4700 m/s) as the speed of sound for the longitudinal
phonon along the lattice’s principal axes, a physically reason-
able value. The phonon dispersion obtained by diagonalizing
Eq. (21) is given in Fig. 1(b).

An important component of our derivation in Sec. II is
the rapid decay of the recoil kernel

↔
W in Eq. (10). For the

monoatomic lattice considered here, the 3 × 3 component of
this kernel coupling framework atoms j and k is

↔
W j,k (t ) =

∑
l

ηlη
†
l

m�2
l

eiql ·(L j−Lk )

N
cos(�l t ). (22)

To illustrate this decay, we plotted its diagonal element Wd (t )
for our model system as a function of time in Fig. 1(c). We
see that, despite its oscillatory nature, this term decays rapidly

for t � 0.2 ps, corresponding to the period of the fastest mode.
We reiterate that the maximum phonon frequency chosen here
is substantially smaller than the typical values seen in ionic
conductors, which are closer to 20 THz. Therefore, the recoil
kernel in stiffer real materials is expected to decay even faster.

In the context of ionic motion, the homogeneous portion

rH (t ) = ∑
n ζ j (t )

↔
m

− 1
2

ε j corresponds to thermal vibrations
of the lattice and the amplitudes of ζ j (t ) = Aj cos(� jt + φ j )
need to reflect this fact. Writing Aj (n j ) explicitly as a function
of the quantum excitation level, we have

〈Re[ζ j (t )]2〉 =
∮

dφ j

2π

∑
n A2

j (n) cos2(� jt + φ j )e−n� j/�T∑
n e−n� j/�T

= 1

2

∑
n A2

j (n)e−n� j/�T∑
n e−n� j/�T

, (23)

where �T = kBT/h̄ is the thermal frequency. Using the
fact that, for a quantum harmonic oscillator, 〈Re[ζ j (t )]2〉 =

h̄
� j

[nB(� j ) + 1
2 ], where nB is the Bose-Einstein distribution,

we find that Aj (n j ) =
√

n j + 1
2

√
2h̄
� j

, where n j is an integer

obtained from the probability distribution e−n� j/�T . The phase
φ j , on the other hand, is uniformly distributed over [0, 2π ].

To get a better feel for the framework’s thermal motion,
we consider a system of 60 × 60 × 60 unit cells. We generate
rH (0) and ṙH (0) for several temperatures by sampling Aj’s
and φ j’s and then construct the histograms for the framework
mass in Figs. 1(d) and 1(e), respectively.
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FIG. 1. Model system. A simple cubic lattice, depicted in (a),
where each lattice ion couples to its six nearest neighbors (shown
in green) with a coupling k1, and to its 12 next-nearest neigh-
bors (shown in orange) with a coupling k2. (b) The phonon
dispersion computed using the dynamical matrix in Eq. (21)
for m = 3.5 meV ps2/Å2, a = 3 Å, k1 = 520 meV/Å2, and k2 =
170 meV/Å2. (c) Diagonal element of the recoil matrix

↔
W (t ) for

this model system. The rapid decay of this term provides support
for the time-local treatment. (d), (e) Distributions of displacements
and speeds of the framework ions due to thermal motion at different
temperatures. Solid curves are analytic Maxwell-Boltzmann distri-
butions and shaded areas are histograms obtained from numerically
generated displacements for a system of 60 × 60 × 60 unit cells.

Because it consists of independent harmonics with ran-
dom phases and thermally-distributed amplitudes, rH (t ) is a
stationary Gaussian process with zero mean and a covariance
matrix given by

↔
C (t ) = 〈rH (t )r†

H (0)〉

=
∑

l

↔
m

− 1
2

εlε
†
l

↔
m

− 1
2 Re[〈ζl (t )ζl (0)〉]

=
∑

l

↔
m

− 1
2

εlε
†
l

↔
m

− 1
2 h̄ cos(�l t )

2�l
coth

(
�l

2�T

)
.

(24)

Diagonal elements of
↔
C (0) give the variance of the

framework atoms’ displacements along individual Cartesian

FIG. 2. Schematic of the transport model. In a cubic lattice of
50 × 50 × 50 masses with periodic boundary conditions, the mobile
particle interacts via a head-on collision with a single mass (shown
here as part of a unit cell). We numerically solve for the motion of
the mobile particle and the single mass and use these trajectories to
validate the time-local equation.

directions. Multiplying the summand in the penultimate line
of Eq. (24) by �2

l gives the covariance matrix for velocities.
The total displacement probability distribution is given by
the Maxwell-Boltzmann form 4πr2 exp(−r2/2σ 2)/(2πσ )3/2,

where σ is the square root of
↔
C (0)’s diagonal element. Sim-

ilarly, we compute the standard deviation for the velocity.
In Figs. 1(d) and 1(e), we see excellent agreement between
simulated histograms and analytic forms of the distributions
over a range of temperatures.

Finally, to describe the interaction between the framework
and the particle, we follow our earlier work [23–26] and adopt
a simplified form by assuming that U is given by the sum
of pairwise terms coupling the mobile particle and individual
framework masses. For the pairwise term, we use the simplest
physically motivated form: a screened Coulomb interaction
U (x) = U0 exp(−|x|/λ)/|x| that gives the correct diverging
behavior as the separation goes to zero. In ab initio NEB cal-
culations using periodic boundary conditions, the interaction
between image charges becomes negligible with supercells
larger than a few unit cells in each direction. This observation
indicates that a realistic interaction must be screened on a
comparable length scale—unscreened Coulomb interactions
are too long-range.

IV. TIME-LOCALITY VALIDATION

Once we derived the approximate time-local solution for r
[Eq. (16)], we wanted to test how reasonable its predictions
were. To this end, we considered a cubic system described
in Sec. III composed of 50 × 50 × 50 masses with periodic
boundary conditions and rH = ṙH = 0. With the framework at
rest and undeformed, the mobile particle was launched toward
one of the framework masses along one of the edges of a
cubic unit cell, set to interact only with its target framework
mass, as shown in Fig. 2. We then evolved the system using
the full set of equations of motion (full EOM) in Eqs. (2)
and (3) using the fifth-order Runge-Kutta method, recording
the positions and velocities of the particle and the interacting
mass. To assess the validity of the time-local approximation,
we compare the full EOM trajectory r [the left-hand side of
Eq. (16)] to the time-local trajectory: the right-hand side of
Eq. (16) calculated by inserting the full EOM r and R.When
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Validations of the time-local formalism. We numerically simulated a mobile particle launched toward a framework mass, as shown
in Fig. 2, with framework properties given in Sec. III. The mobile particle interacts only with its target mass via U = U0e−|x|/λ/|x| with
U0 = 14 000 meV. (a)–(d) Deflection of the interacting mass (e)–(h) Force experienced by the mobile particle. The four columns correspond to
different combinations of the potential width λ and initial particle speed Ṙ0. Each panel includes four curves corresponding to different levels
of approximation. We calculated full results by solving the equations of motion, Eqs. (2) and (3), for the 50 × 50 × 50 framework and the
mobile particle. We calculated time-local r by inserting the full-solution r, ṙ, R, and Ṙ into the expression on the right-hand side of Eq. (25),
and calculated the force using time-local r and full-solution R. For the remaining two solutions, we also used Eq. (25), but set ṙ or both r and
ṙ on the right-hand side to zero, in quasistatic and homogeneous approximations, respectively. The horizontal dashed lines in all the panels
show the amplitude of the maximum displacement and force obtained from the full solutions.

we restrict our attention to a single framework mass, Eq. (16)
simplifies dramatically. In fact, because L and

↔
W 0 (0) are

diagonal and the particle moves along a high-symmetry di-
rection, we need to consider only a single component of the
displacement vector, leading to

r = − wU ′(r − R) + lU ′′(r − R)
(
ṙ − Ṙ

)
, (25)

where w and l are the diagonal elements of
↔

W 0 (0) and L,
respectively.

As a benchmark for the time-local approximation, we
numerically calculated full EOM trajectories for several pa-
rameter values. For those parameters where a clear scale
exists in common materials, we chose a representative value,
while for other parameters we chose multiple values to il-
lustrate deviations from the full EOM solutions. We used
an interaction amplitude U0 = 14 000 meV, corresponding to
the mobile and framework ions carrying charges of about
1e. For the screening length, we used one of two val-
ues: λ = 1/5 Å or λ = 1/2 Å, so U (a) ≈ 1.4 × 10−3 meV or
U (a) ≈ 11.6 meV, respectively. We also checked the poten-
tial energy difference between two mobile particle positions:
in the middle of the unit cell and in the middle of one
of the faces. This difference gave a rough estimate of the
potential barrier that the particle needs to overcome to
move from one unit cell to another. For λ = 1/5 Å, �U ≈
0.654 meV − 0.098 meV = 0.556 meV and for λ = 1/2 Å,
�U ≈ 401.4 meV − 242.1 meV = 159.3 meV. The latter en-
ergy barrier is similar to typical values found in ionic
conductors, so λ = 1/2 Å represents a typical material, while

the former barrier is unrealistically low, so λ = 1/5 Å repre-
sents a pathological extreme.

We set the starting speed of the mobile particle to either
2 Å/ps or 10 Å/ps, giving a total of four simulation runs.
For each run, the particle was initialized 24λ away from the
interacting mass. The resulting trajectories of the interact-
ing mass obtained from the full EOM solution are shown in
Figs. 3(a)–3(d) as the light blue curves.

In these trajectories, we see two primary trends. First, for
the same interaction profile, faster-moving particles produce a
larger maximum deflection, as expected. On the other hand,
at a given initial speed, the maximum deflection decreases
with increasing interaction width. Physically, for a very nar-
row potential, the mobile particle delivers an impulse to the
framework mass and bounces off before the rest of the frame-
work has time to respond. Consequently, during the brief time
period of contact between the two objects, the framework
mass behaves like a free mass. Conversely, if the potential is
very wide, the particle exerts a smaller force on the framework
mass over a longer period of time, allowing the neighboring
framework masses to respond and provide a restoring force.
This result is consistent with Eq. (25), where a wider poten-
tial corresponds to a smaller derivative of U , decreasing the
magnitude of r.

After computing the positions and velocities of the particle
and the framework mass, we insert them into the right-hand
side of Eq. (25) and plot the resultant time-local solutions
r, shown as green curves, along with the full EOM results.
Naturally, because the time-local formula predicts a deflection
only when the mobile particle exerts force on the mass, the
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curve does not exhibit the oscillations observed in the full
solution. Except for the most pathological case, in Fig. 3(a),
both the magnitude of the deflection and its time dependence
are similar for all the results.

While the deflection of the framework mass is a good check
for our solutions, the dynamics of the mobile particle are
more governed by the force exerted by the framework mass.
Therefore, we plotted the force, −U ′(R − r), in Figs. 3(e)–
3(h) calculated from the corresponding deflection in
Figs. 3(a)–3(d). We see that the difference in the force be-
tween the full and time-local results is substantially smaller
than the difference in the deflection. In fact, for all but
the most pathological case, the difference is essentially
negligible.

Although the calculated displacements of our full and time-
local solutions match well, the time-local equation of motion
Eq. (16) is not solvable on its own. First, even in the single-
framework case, Eq. (25), there are two unknowns: r and ṙ. If
we try to circumvent this difficulty by solving for ṙ to obtain
a differential equation of the form ṙ = f (r), this produces a
term r/U ′′(r − R) which diverges when U ′′ goes to zero. In
the more general case of Eq. (16), it is impossible to solve
for ∇rdU/dt because the matrix KLKT is singular, so some
further simplification is necessary.

To proceed with our underdefined time-local problem, we
make use of the fact that the deflection of the framework mass
is rather small, so its velocity must also be small: ṙ → 0 on
the right-hand side of Eq. (25). Using this quasistatic approx-
imation, we calculated the deflection and force for the same
parameters as the other simulations, with the results shown as
yellow curves in Fig. 3. We see that this simplification leads to
very minor changes in the deflection and even smaller ones in
the force. The main advantage of this simplification is that it
turns Eq. (25) and, by extension, Eq. (16) into truly time-local
transcendental equations for r. In the presence of thermal
motion, this quasistatic approximation amounts to substituting
ṙ → ṙH .

Although the quasistatic approximation leads to an im-
portant simplification, solving the resulting transcendental
equation can still be numerically costly. Therefore, noticing
that the magnitude of the deflection is smaller than the poten-
tial width, we set r → 0 on the right-hand side of Eq. (25),
which is equivalent to replacing r → rH on the right-hand
side of Eq. (16). The resulting solutions with a homogeneous-
motion approximation are plotted in Fig. 3 as red curves.
Comparing the various solutions, we see that this dramatic
simplification does not introduce a significant difference to
the force experienced by the particle.

Based on the results presented in Fig. 3, we see that the
numerically tractable time-local, quasistatic, homogeneous-
motion approximation captures the motion of the framework
and the force it exerts on the mobile particle quite well. There-
fore, when exploring dissipation and diffusion in the following
sections, we make use of this simplified form of Eq. (16).

V. DISSIPATION

Employing the time-local, quasistatic, homogeneous-
motion approximation, we set ṙ and r to zero on the right-hand

side of Eq. (25) (as in Sec. IV), which yields

r = wU ′(R) − lU ′′(R)Ṙ. (26)

Since we already assumed the deflection is small, we em-
ployed a series expansion for the force exerted on the mobile
particle:

MR̈ = −U ′(R − r)

≈ −U ′(R) + U ′′(R)[wU ′(R) − lU ′′(R)Ṙ]

= −U ′(R) + wU ′′(R)U ′(R) − l[U ′′(R)]2Ṙ. (27)

The first term is essentially the force on the mobile particle
from the undeflected framework, the second is a correction
due to the framework relaxation, and the third is a force
proportional to the speed and directed against the motion—a
drag force.

To demonstrate the ability of our formalism to capture
drag, we computed two trajectories. First, we used the full set
of equations of motion in Eqs. (2) and (3) for a cubic system of
100 × 100 × 100 masses with periodic boundary conditions
and rH = ṙH = 0. Second, we used the time-local, quasisti-
atic, homogeneous-motion approximation of Sec. IV given by
Eqs. (17)–(20) with rH = ṙH = 0. As before, the calculations
were performed using the fifth-order Runge-Kutta method.

To make the results easier to compare, we set up the initial
conditions in a manner which produced a one-dimensional
path. In particular, we initialized the mobile particle on one
of the edges of a cubic unit cell, halfway between the corners,
moving along the edge. We allowed the particle to interact
with eight framework masses: four positioned along the edge
ahead of its initial position and four behind [see Fig. 4(a)].
We excluded the closer-lying masses not positioned along the
edge to speed up the calculation. Although this restriction
does not lead to physically realistic mobile ion trajectories,
it does demonstrate dissipation in our model.

Integrating over momenta [Eq. (22)] is computationally
costly, so prior to running the simulation, we precalculated
↔

W j−k (0) for all index pairs j, k that are required to connect
all the framework masses that interact with the particle at any
given time.

For this demonstration, we employed a screened Coulomb
interaction with λ = 1/2 Å with U0 = 150 meV. We chose
this smaller interaction strength to lead to more oscillations
before the particle came to rest. Additionally, because we in-
troduced the particle at a highly energetic position, we wanted
to avoid the effects of the boundary term that we dropped from
Eq. (11). In Fig 4, we see the position and velocity of the
particle computed using the time-local formalism and the full
system of equations. The two solutions show a very similar
decay profile, with the full solution decaying slightly faster.
A tiny phase difference is visible at later times, which we
attribute to the framework motion present in the full-solution
case and absent from the time-local approach. In short, dissi-
pation is not affected much by our simplifications, even in a
more realistic scenario.
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(a)

(b)

(c)

FIG. 4. Dissipation. (a) A particle constrained to move along
one of the edges of the unit cell, interacting with four framework
masses ahead of it and four behind via the Yukawa interaction with
λ = 1/2 Å and U0 = 150 meV. We computed the full solution using
Eqs. (2) and (3) using the fifth-order Runge-Kutta method with δt =
5 × 10−3 ps. We also computed the time-local result using fifth-order
Runge-Kutta from Eqs. (18)–(20) with rH = ṙH = 0. The calculated
positions and speeds are given in (b) and (c), respectively, showing
very good agreement between the two methods.

VI. DIFFUSION

Finally, we introduced thermal motion to the framework
to check its influence on mobile particle motion. The com-
putational procedure was essentially identical to the previous
section, but with a preliminary procedure and two additional
steps. Prior to the calculation, we generated a set of mode
excitation levels n j and corresponding phases φ j . For the first
additional step during the trajectory simulation, whenever we
needed to calculate the force exerted on the mobile particle,
we began by determining which unit cell the mobile particle
was in. Second, assuming that the particle interacts only with
the eight framework ions at the corners of this unit cell, we
used the pregenerated harmonic amplitudes and phases to
calculate rH and ṙH for those ions. After that, we proceeded
as before by using Eqs. (18)–(20) to compute the force ex-
perienced by the particle. This approach led to a thermal
trajectory with correct statistical properties while keeping the
number of computed framework displacements manageable.
To generate the trajectories, we used 20 × 20 × 20 points for
each of the three branches the phonon Brillouin zone so that,
after discarding the zero-momentum points, we used 23 997
modes.

For these calculations, we set λ = 1/2 Å, and U0 = 4 eV
or 8 eV. In the unrelaxed configuration, these U0’s resulted in
energy barriers between two neighboring unit cells of about

(b)(a)

(d)(c)

FIG. 5. Time-local diffusion simulations. Particle trajectories ob-
tained using Eqs. (18)–(20) at different temperatures and interaction
strengths. For all four cases, λ = 1/2 Å. Circles (crosses) denote
starting (final) positions. Scale boxes of 1 nm × 1 nm × 1 nm are
shown in grey. In each case, the underlying lattice geometry is
evident in the trajectory, showcasing both motion within unit cells
and transport between them.

45.5 meV and 91 meV, respectively. If we allowed the lattice
to relax, the barriers decreased to 42.3 meV and 79.3 meV,
respectively. Although these values are lower than typical
energy barriers found in solid ionic electrolytes (≈150 −
300 meV for good ionic conductors), they have the correct
order of magnitude. Initially, we chose two temperatures
h̄�T = 25 meV or 50 meV and, with two values of U0, com-
puted four random-walk trajectories spanning 3 ns with δt =
5 × 10−3 ps, shown in Fig. 5.

In line with physical intuition, weaker interactions U0 and
higher temperatures h̄�T make it easier for the particle to
escape the local energy minima, resulting in a longer path.
To quantify the particle’s diffusive behavior, we split each
trajectory into 250 segments of 12 ps duration each, calculated
the squared displacement |�R|2 as a function of time for each
of these segments, then averaged the 250 results to compute
the mean 〈|�R|2〉 for each of the four trajectories, shown
in Fig. 6. We observe that 〈|�R|2〉 ∝ t , as expected for a
diffusive process, where the proportionality constant is 6D for
a 3-dimensional diffusion coefficient D. For the U0 = 8 eV,
h̄�T = 25 meV case, the simulation time was not long enough
to show diffusive motion, as is evident from Fig. 5(c), so the
slope of 〈|�R|2〉 does not accurately reflect D.

To investigate the temperature dependence of diffusiv-
ity, we simulated trajectories at several temperatures for
U0 = 4 eV. As above, we partitioned each 3-ns trajectory into
250 segments and used them to calculate the mean square
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FIG. 6. Mean squared displacement. For four different combina-
tions of system parameters, we computed particle motion for a total
duration of 3 ns, then divided the trajectory into 12 ps segments.
From these segments, we computed the mean and standard error
of the squared displacement, depicted with the colored curves and
bands, respectively. In all cases, for roughly the first ps, 〈|�R|2〉
grows quadratically with time, due to essentially ballistic particle
motion within a single unit cell. For longer times, the growth is linear,
as shown by agreement with a fit.

displacement 〈|�R|2〉 as a function of time, shown in Fig. 7,
for both time-local and full solutions. We excluded the first 1
ps from each segment to reduce the effect of motion within
a single unit cell. We fit the resulting 〈|�R|2〉, weighted by
its uncertainty, to find its slope for each temperature. Recall-
ing that, in 3D diffusion, the variance of displacement as a
function of time is 6Dt , we divided the resultant slopes by 6
to yield the diffusion coefficients D. We plot the temperature
dependence of the diffusion coefficients in the insets of Fig. 7.

Because of the large displacement over the 3 ns window,
as seen from Fig. 5, it is not computationally feasible to have
a sufficiently large system for a full simulation. Therefore,
while the particle’s trajectory is continuous, we use periodic
boundary conditions to calculate the forces.

Based on an apparent linear relation between D and
1/h̄�T on the logarithmic scale for both types of so-
lution, we fit the diffusivities using an Arrhenius form
D = D0e−Ea/h̄�T and found, with 95% confidence, D0 =
9.8+2.4

−1.9 (23.0+4.4
−3.7) Å2/ps and Ea = 42 ± 5 (40 ± 5) meV for

time-local (full) solutions—the latter are close to the es-
timated barrier height of 42.3 meV. This barrier estimate
includes both the particle-framework interaction component
of 39.4 meV, as well as the framework deformation energy of
2.9 meV.

VII. DISCUSSION

A key approximation we made to obtain a time-local ex-
pression was setting the maximum phonon momentum to
infinity in Eq. (15), turning the response kernel into a Dirac
delta function. In reality, of course, the response kernel decays
on time-scales similar to the period of the fastest mode, as
seen in Fig. 1(e). Fortunately, because the decay is quite fast, if
we want to bear a greater computational cost in order to more
faithfully capture the finite decay time, we can replace the
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FIG. 7. Temperature dependence of diffusivity. Main figures:
Mean square displacement for a mobile particle as a function of time
at different temperatures for U0 = 4 eV, λ = 1/2 Å. In (a), we used
the time-local solution while in (b) we used the full solution. In all
cases, the initial growth is quadratic, and later evolution is linear,
allowing us to extract the slope 6D from a fit. Insets: diffusivity D as
a function of temperature demonstrates Arrhenius behavior, where
the slope of the fit is −Ea, and the offset gives D0.

lower limit of the integral in Eq. (11) by ∼t − 2π/�max. As
long as the framework deflection is small enough to warrant
the r → rH switch on the right-hand side of Eq. (11), we can
obtain a tractable quasi-time-local description.

For our calculations, we used a cubic lattice and screened
Coulomb interactions for computational convenience. How-
ever, we chose system parameters to try to yield insight
into a variety of (more complicated) realistic systems. To
demonstrate diffusion in this suboptimal lattice structure, we
made the framework less stiff so its thermal fluctuations could
push the mobile particle out of local energy minima more
frequently. Although a softer lattice reduces the applicability
of our time-local approach, where a comparison was possible,
time-local results showed good agreement with the full simu-
lations. We expect that stiffer bonds in real ionic conductors
will lead to a greater accuracy of the formalism for two main
reasons. First, the recoil kernel will decay faster, making the
Dirac delta function approximation more accurate. Second,
the deflection of the framework atoms will be suppressed,
supporting replacing r → rH on the right-hand side of
Eq. (11).
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One of the key aims of our approach is simulation speedup.
Given that the 20 × 20 × 20 cube used in the full diffusion
solution has 24 000 degrees of freedom compared to the
three required for the single-ion simulation, the Runge-Kutta
time evolution is much faster for the time-local approach.
At the same time, there is an additional cost associated with
our method, originating from generating the homogeneous
framework motion. The precise cost depends on the method
employed. In this work, we aimed to have the time-local and
full solution approaches to be as similar to each other as
possible. Therefore, when generating the homogeneous mo-
tion, we used 23 997 harmonics and summed them every time
we needed to find the homogeneous displacement, leading to
a slowdown of the simulation. At the same time, there are sev-
eral ways to avoid this slowdown. For example, one could use
fewer harmonics while still maintaining appropriate statistical
properties. Additionally, because the homogeneous trajectory
does not depend on the position of the mobile particle, one
could generate the displacements at multiple time steps in
parallel, speeding up the calculation. Another way is to use
the fact that the framework displacement constitutes a homo-
geneous process and generate it as the simulation progresses.

In a good ionic conductor, current carriers easily es-
cape energy minima and spend a long time delocalized
before getting trapped again [5]. The energy necessary for
a charge carrier to leave a minimum originates from the
framework’s thermal fluctuations. Unfortunately, because of
the fluctuation-dissipation theorem, increased thermal forces
experienced by the mobile particles are necessarily accompa-
nied by an increase in drag. Our analytical results indicate that
the drag is inversely proportional to the framework density
and the cube of the speed of sound (a measure of the lat-
tice stiffness). For an infinitely stiff material, the dissipation
term vanishes. Simultaneously, however, the amplitude of the
thermal fluctuations vanishes and the particle never acquires
sufficient energy to become delocalized. Conversely, for a
very soft material, both the fluctuations and the drag forces
are large, suppressing the particle’s motion. Therefore, it is
reasonable to assume that, all else being equal, there is some
optimal stiffness that balances the fluctuation and dissipation
components, leading to the greatest diffusivity. Similar logic
can be applied to the material density. We expect the improved
efficiency of our approach to facilitate explorations of the
parameter phase space to build an intuitive understanding of
the role that these characteristics play in ionic conductivity.

In our recent work [21], we showed that diffusion coeffi-
cients can deviate from Arrhenius scaling even in the simplest
case, where the electrolyte is composed of a single atom.
This deviation is also commonly observed experimentally, yet
in Sec. VI, we found that the diffusion coefficient follows
an Arrhenius scaling with an activation energy close to the
statically computed value. Generally, we expect the deviation
to be greatest when the transmission of the mobile ions across
the potential maximum involves multiple degrees of freedom.
In other words, the lattice deformation due to thermal motion
plays an important role, as would be the case in softer ma-
terials, where the typical thermal framework displacement is
larger. In the case addressed here, a relatively small portion of
the barrier energy is attributable to the framework deforma-
tion, resulting in rather robust Arrhenius behavior.

In our simulations, the energy barrier was composed
primarily of the particle-framework interaction, while the de-
formation energy played a much smaller role. Consequently,
for the particle to escape a local minimum, it was sufficient
that it have enough energy without relying on a favorable
framework configuration when it approached the unit cell’s
face. For a particle with Boltzmann energy distribution, the
probability that it has sufficient energy Ea is approximately
proportional to e−Ea/h̄�T , giving the Arrhenius form for the
probability of the particle’s escape. However, if the relaxed
configuration involves a large lattice deformation, particle
escape also requires a favorable framework arrangement, lead-
ing to a deviation from the Arrhenius form. The reason for
this deviation is the fact that the probability of a particle hav-
ing sufficient energy and the lattice assuming a configuration
that allows the particle to move between energy minima is
no longer Boltzmann distributed, as discussed in detail in
Ref. [21].

VIII. SUMMARY

We have presented a scheme for computing the mo-
tion of mobile ions in solid electrolytes using a time-
local approximation. By its construction, this formalism
is intermediate between fully static NEB calculations and
time-approximation-free AIMD simulations. Our approach
demonstrates the main features associated with ionic trans-
port: dissipation and diffusion. The simplified computation
procedure makes it possible to perform simulations on time
and length scales more similar to those anticipated in devices.
In addition to providing a time-local formulation, we also
propose a computationally tractable way to capture the short-
time-nonlocal effects.

We envision several natural extensions to this work. First,
although we focused on a single mobile ion, it is straightfor-
ward to extend our treatment to multiple current carriers. We
do not expect the formalism pertaining to the response kernel
to be significantly altered. Rather, we would only need to
include the interaction between the mobile particles to prevent
them from occupying the same energy minimum. Because the
interactions inside the electrolyte are fairly short-ranged, in
a sufficiently dilute limit, the single-ion picture should still
hold, similarly to the Sommerfeld free-electron model. We
suspect that simulating ionic motion with multiple ions could
reveal subtle correlation effects, as well as a departure from
the diffusive behavior, leading to anomalous diffusion.

Next, in the limit of high carrier concentration, the inter-
stitial transport picture changes into a vacancy-carrier current.
We suspect modifying our formulation to describe vacancy
(rather than particle) motion would not introduce dramatic
changes to the structure of the solutions, since the timescale
for the response kernel decay should be similar.

Finally, machine learning (ML) techniques can play a
substantial role in the simulations. For the model system
considered here, we took a very simple interaction form U .
In reality, of course, the potential profile inside a unit cell is
very complex and computing it for an arbitrary position of the
interstitial atom is computationally costly. Fortunately, ML
has been successfully used to generate potential profiles much
faster than using the traditional ab initio methods.
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For this work, all computations were performed using JU-
LIA [29]. The plots were made with the Makie.jl package [30]
using the color scheme designed for colorblind readers [31].
The scripts used for computing and plotting can be found at
Ref. [32].
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